Türkçe

Advanced OPA enhances the energy of attosecond imaging ultra short pulses

871
2024-05-11 16:03:34
Çeviriyi gör

The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.

Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond pulses, it is necessary to develop stable, high-energy, and long wavelength single period laser sources.

Researchers at the RIKEN Advanced Photonics Center have developed a method for generating high-energy single cycle MIR pulses. This method is called Advanced Dual Chirp Optical Parametric Amplification (Advanced DC-OPA), which increases the energy of a single cycle laser pulse by 50 times and can be used to generate extremely short pulses with a peak power of 6 terawatts.

"At present, the output energy of attosecond lasers is extremely low," said researcher Eiji Takahashi. "If they are to be used as light sources for a wide range of fields, increasing their output energy is crucial."

Researchers used two types of nonlinear crystals to develop advanced DC-OPA - bismuth triborate oxide (BiB3O6) and lithium niobate doped with magnesium oxide (MgO: LiNbO3). The crystal magnifies the complementary regions of the spectrum.

Takahashi said, "The advanced DC-OPA for amplifying single cycle laser pulses is very simple, based only on a combination of two nonlinear crystals." "What surprised me was that such a simple concept provided a new amplification technology and brought breakthroughs in the development of high-energy, ultrafast lasers."

The damage threshold of nonlinear crystals limits the energy scalability of OPA under high pulse energy. Takahashi said, "The biggest bottleneck in the development of high-energy and ultrafast infrared laser sources is the lack of effective methods for directly amplifying single cycle laser pulses." "This bottleneck results in a millijoule barrier in the energy of single cycle laser pulses."

The advanced DC-OPA method overcomes the bottleneck of pulse energy scalability using single cycle IR/MIR laser systems.

The team expects that advanced DC-OPA methods will drive the development of attosecond laser technology forward. Takahashi said, "We have successfully developed a new laser amplification method that can increase the intensity of a single cycle laser pulse to terawatt level peak power." "This is undoubtedly a significant leap in the development of high-power attosecond lasers."

Due to the excellent energy scalability of the advanced DC-OPA method, laser pulses with higher pulse energy and fewer pulse duration cycles can be achieved based on different crystal combinations and higher pump energy. The extension of pulse energy can promote high-throughput detection conditions in strong field physics research.

Takahashi believes that by capturing the motion of electrons, attosecond lasers have made significant contributions to fundamental science. "They are expected to be used in a wide range of fields, including observing biological cells, developing new materials, and diagnosing medical conditions," he said.

The ultimate goal of Takahashi is to exceed the speed of the attosecond laser and generate shorter pulses. "By combining a single period laser with higher-order nonlinear optical effects, it is possible to generate optical pulses with a time width of Ze seconds (one Ze second=10-21 seconds)," he said. "My long-term goal is to open the door to research on Zeosecond lasers and open up the next generation of ultra short lasers after Atosecond lasers."

Source: Laser Net

İlgili öneriler
  • Northeastern University of Japan: Breakthrough Laser Technology for Nanoscale Laser Processing

    In the fields of optics and micro/nano processing, precise manipulation of lasers to meet the growing demand for miniaturization is an important challenge in driving the development of modern electronic and biomedical equipment. Recently, researchers from Tohoku University in Japan successfully demonstrated the use of interference technology to enhance the longitudinal electric field of radially p...

    2024-04-12
    Çeviriyi gör
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Çeviriyi gör
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    Çeviriyi gör
  • Laser induced magnetic generation of non-magnetic materials at room temperature helps to develop faster and more energy-efficient information transmission and storage technologies

    Researchers from the University of Stockholm in Sweden, the Nordic Institute for Theoretical Physics, and the University of Cafoscari in Venice, Italy have successfully demonstrated for the first time how lasers induce quantum behavior at room temperature and make non-magnetic materials magnetic. This breakthrough is expected to pave the way for faster and more energy-efficient computers, informat...

    2024-06-03
    Çeviriyi gör
  • Enlightra and DESY Hamburg developed an improved and scalable comb laser

    Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard...

    2024-01-26
    Çeviriyi gör