Türkçe

Advanced OPA enhances the energy of attosecond imaging ultra short pulses

534
2024-05-11 16:03:34
Çeviriyi gör

The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.

Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond pulses, it is necessary to develop stable, high-energy, and long wavelength single period laser sources.

Researchers at the RIKEN Advanced Photonics Center have developed a method for generating high-energy single cycle MIR pulses. This method is called Advanced Dual Chirp Optical Parametric Amplification (Advanced DC-OPA), which increases the energy of a single cycle laser pulse by 50 times and can be used to generate extremely short pulses with a peak power of 6 terawatts.

"At present, the output energy of attosecond lasers is extremely low," said researcher Eiji Takahashi. "If they are to be used as light sources for a wide range of fields, increasing their output energy is crucial."

Researchers used two types of nonlinear crystals to develop advanced DC-OPA - bismuth triborate oxide (BiB3O6) and lithium niobate doped with magnesium oxide (MgO: LiNbO3). The crystal magnifies the complementary regions of the spectrum.

Takahashi said, "The advanced DC-OPA for amplifying single cycle laser pulses is very simple, based only on a combination of two nonlinear crystals." "What surprised me was that such a simple concept provided a new amplification technology and brought breakthroughs in the development of high-energy, ultrafast lasers."

The damage threshold of nonlinear crystals limits the energy scalability of OPA under high pulse energy. Takahashi said, "The biggest bottleneck in the development of high-energy and ultrafast infrared laser sources is the lack of effective methods for directly amplifying single cycle laser pulses." "This bottleneck results in a millijoule barrier in the energy of single cycle laser pulses."

The advanced DC-OPA method overcomes the bottleneck of pulse energy scalability using single cycle IR/MIR laser systems.

The team expects that advanced DC-OPA methods will drive the development of attosecond laser technology forward. Takahashi said, "We have successfully developed a new laser amplification method that can increase the intensity of a single cycle laser pulse to terawatt level peak power." "This is undoubtedly a significant leap in the development of high-power attosecond lasers."

Due to the excellent energy scalability of the advanced DC-OPA method, laser pulses with higher pulse energy and fewer pulse duration cycles can be achieved based on different crystal combinations and higher pump energy. The extension of pulse energy can promote high-throughput detection conditions in strong field physics research.

Takahashi believes that by capturing the motion of electrons, attosecond lasers have made significant contributions to fundamental science. "They are expected to be used in a wide range of fields, including observing biological cells, developing new materials, and diagnosing medical conditions," he said.

The ultimate goal of Takahashi is to exceed the speed of the attosecond laser and generate shorter pulses. "By combining a single period laser with higher-order nonlinear optical effects, it is possible to generate optical pulses with a time width of Ze seconds (one Ze second=10-21 seconds)," he said. "My long-term goal is to open the door to research on Zeosecond lasers and open up the next generation of ultra short lasers after Atosecond lasers."

Source: Laser Net

İlgili öneriler
  • Cannon-Brookes spotlights Singapore with SunCable solar

    Billionaire Mike Cannon-Brookes' plan to export clean energy from Australia to Singapore via a 4,200km undersea cable has gained new momentum after taking control of the stalled project.Cannon-Brookes' Grok Ventures has completed its acquisition of SunCable from the government and is advancing talks with authorities in Singapore and Indonesia, the investment firm said on Thursday. The revised plan...

    2023-09-08
    Çeviriyi gör
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    Çeviriyi gör
  • Diffractive optical elements: the behind the scenes hero of structured light laser technology

    In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Ho...

    2024-04-10
    Çeviriyi gör
  • Safran Group believes that additive manufacturing is playing an increasingly important role in engines

    Safran Group showcased a 3-foot diameter turbine aft casing manufactured using additive manufacturing technology under the RISE technology program at the Paris Air Show in recent years. This component is Safran's largest additive manufacturing component to date, indicating the increasingly widespread application of additive manufacturing in the design and manufacturing of turbofan engines. In ea...

    06-18
    Çeviriyi gör
  • The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

    The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been...

    2023-10-28
    Çeviriyi gör