Türkçe

Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

795
2024-04-30 15:43:35
Çeviriyi gör

In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well as drive ion acceleration and rapid heating of matter, serving as energy carriers in the "fast fire" process of inertial confinement fusion. The properties of various secondary radiation and particle sources, plasma heating and energy deposition processes are closely related to the temporal, spatial, and energy characteristics, as well as the evolution dynamics of hot electrons.

After years of research, people have gained a clear understanding of the energy and spatial characteristics of superheat electrons. However, due to the lack of suitable high-resolution measurement methods, the diagnosis of the time structure and dynamic processes of superheat electron beams still faces challenges.

Liao Guoqian, a distinguished researcher of the Institute of Physics of the Chinese Academy of Sciences/Key Laboratory of Photophysics of the National Research Center for Condensed Matter Physics in Beijing, Li Yutong, a researcher, and Zhang Jie, an academician of the CAS Member, have explored for many years a new way to generate high power terahertz radiation from the interaction between ultra intense lasers and solid targets, proposed a terahertz generation model based on the coherent transition radiation of ultra hot electron beams, and developed a single shot ultra wideband terahertz detection technology based on non collinear autocorrelation.

Based on the above achievements, researchers have recently proposed a new method for diagnosing superheat electron beams using terahertz radiation. Using a self-developed high time resolution single shot terahertz autocorrelation instrument, in-situ and real-time measurements of the time-domain structure and dynamics of superheat electron beams during the interaction between ultra strong lasers and thin film targets have been achieved.

This study theoretically constructs a mapping relationship between terahertz radiation properties and the spatiotemporal characteristics of superheat electron beams, and provides a quantitative relationship between terahertz pulse width and parameters such as electron beam pulse width, beam spot size, and emission angle. This study accurately characterized the pulse width of a few tens of femtoseconds level hot electron beam in the laser solid target interaction. It was found that the electron beam accelerated by the ultra strong laser has a pulse width similar to that of the driving laser during generation. During transmission, the longitudinal time width and transverse spatial size gradually widen due to velocity dispersion and angular divergence; We directly observed the dynamics of hot electron backflow caused by secondary acceleration of laser pulses and target surface sheath field. It was found that when a high contrast laser interacts with a thin film target, the electron beam bounces back and forth between the front and back surface sheath fields of the target, with a duration of up to 100 femtoseconds. These results demonstrate single shot, non-destructive, in situ, and high temporal resolution methods for characterizing hot electrons, which contribute to understanding and optimizing the spatiotemporal characteristics of ultrafast radiation and particle sources based on hot electrons, and developing related applications.

Diagnosis of pulse width of superheat electron beam using terahertz coherent transition radiation

Diagnosis of Superhot Electron Reflux Dynamics Based on Multi cycle Terahertz Pulses

The related achievements are titled Femtosecond dynamics of fast electron pulses in related laser oil interactions and published in the Physical Review Letters. The research work was supported by the National Natural Science Foundation of China, the Ministry of Science and Technology and the Chinese Academy of Sciences.

Paper link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.155001

Source: Institute of Physics

İlgili öneriler
  • Micro devices output powerful lasers at room temperature, reducing power consumption by 7 times

    Recently, researchers at the Rensselaer Polytechnic Institute in the United States have invented a miniature device thinner than human hair, which can help scientists explore the essence of light and matter and unravel the mysteries of the quantum field. The most important advantage of this technology is that it can work at room temperature without the need for complex infrastructure. The resea...

    2024-05-29
    Çeviriyi gör
  • Leica Cine 1 laser TV with 4K display screen launched with a starting price of $8995

    Photography brand Leica has launched its first 4K movie and television. The Leica Cine 1 laser TV was announced a year later during the I FA 2022 period. This iconic photography brand is shifting some of its focus to projecting perfect images in our living room.featureThe Leica Cine 1 laser TV embodies Leica's philosophy in its camera design. Leica continues to provide precision optical engineerin...

    2023-10-19
    Çeviriyi gör
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Çeviriyi gör
  • Laser engraving: Researchers have created a revolutionary technology

    Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the charac...

    2023-11-24
    Çeviriyi gör
  • Nanjing University of Science and Technology has made new progress in the field of programmable lensless holographic cameras

    Recently, Professor Chen Qian and Professor Zuo Chao's research group from the School of Electronic Engineering and Optoelectronic Technology at Nanjing University of Science and Technology proposed a minimalist optical imaging method based on programmable masks - programmable Fresnel zone aperture lensless imaging technology. The related achievement, titled "Lensless Imaging with a Programmable F...

    04-14
    Çeviriyi gör