Türkçe

Ultra thin two-dimensional materials can rotate the polarization of visible light

298
2024-04-27 13:54:18
Çeviriyi gör

For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate in one direction but blocks all light in the other direction.

In a recent study, physicists from Germany and India showed that ultra-thin two-dimensional materials such as tungsten selenide can rotate the polarization of visible light at certain wavelengths by several degrees under a small magnetic field suitable for chip use. Scientists from the University of M ü nster in Germany and IISER in Pune, India, published their research findings in the journal Nature Communications.

One of the problems with traditional optical isolators is their considerable volume, ranging in size from a few millimeters to a few centimeters. Therefore, researchers are still unable to manufacture micro integrated optical systems on chips that can compete with everyday silicon-based electronic technology. Currently, there are only a few hundred components on integrated optical chips.

Faraday effect in two-dimensional semiconductors
By contrast, computer processor chips contain billions of switching elements. Therefore, the research work of the German and Indian teams has taken a step forward in the development of miniature optical isolators. The two-dimensional materials used by the researchers are only a few atomic layers thick, making them 100000 times thinner than human hair.

Professor Rudolf Bratschitsch from the University of Minster said, "In the future, two-dimensional materials may become the core of optical isolators and enable on-chip integration of current and future quantum optical computing and communication technologies."
Professor Ashish Arora from IISER added, "Even the bulky magnets required for optical isolators can be replaced by atomic level thin two-dimensional magnets. This will greatly reduce the size of photonic integrated circuits."

The research team deciphered the mechanism that led to their discovery: bound electron hole pairs, also known as excitons, in two-dimensional semiconductors cause strong polarization rotation of light when ultra-thin materials are placed in a small magnetic field.
Arora said, "Conducting such sensitive experiments on two-dimensional materials is not easy because the sample area is very small. Scientists had to develop a new measurement technique that is about 1000 times faster than previous methods."

Source: Physicist Organization Network

İlgili öneriler
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    Çeviriyi gör
  • Teledyne Technologies acquires a portion of its optoelectronic business

    Recently, Teledyne Technologies announced that it has reached an agreement to acquire a portion of Excelitas Technologies' aerospace and defense electronics business for $710 million in cash.This acquisition includes the optical systems business under the Qioptiq brand headquartered in North Wales, UK, as well as the Advanced Electronic Systems (AES) business headquartered in the United States.It ...

    2024-11-12
    Çeviriyi gör
  • OPO laser testing optical components

    Optical parametric oscillator laser tests fibers and components to characterize the spectral response of optical components, thereby providing a competitive advantage in the optical industry.OPO lasers have long been used in complex testing and measurement applications, such as mass spectrometry, photoacoustic imaging, and spectroscopy. Now, these "tunable" pulse lasers are being used to facilitat...

    2024-02-20
    Çeviriyi gör
  • Han's Laser New Product Debuts at 2025 Munich Shanghai Light Expo

    New product launch of "Blue Hurricane" red blue integrated laser1. Ultra high power: The "red blue integrated" laser, with optimized optical path design and heat dissipation system, can stably output power exceeding industry standards, meeting high demand application scenarios.2. Dual high brightness: Integrating advanced wavelength modulation technology and materials science, both red and blue l...

    03-07
    Çeviriyi gör
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    Çeviriyi gör