Türkçe

Romania Center launches the world's most powerful laser

865
2024-04-01 14:02:09
Çeviriyi gör

Are you ready? The signal is out! "
In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobel laureates.
Gerard Mourou from France and Donna Strickland from Canada were awarded the 2018 Nobel Prize in Physics for using the power of lasers to develop advanced precision instruments in corrective eye surgery and industry.


The Nobel Academy's award speech said, "The sharp laser beam provides us with a new opportunity to deepen our understanding of the world and shape it."

At the center, in front of the screen wall displaying the beam of light, Thomas checked a series of indicators before starting the countdown. On the other side of the glass, a long row of red and black boxes are equipped with two laser systems. 29 year old Toma told Agence France Presse in a recent live media interview, "I won't lie. Sometimes things can become a bit stressful."
"But working here is also very enjoyable. When the international research team arrived at the center, we were happy that we had achieved results," she added.

-"The incredible Odyssey"-
Nobel laureate Muru admitted that he was "deeply moved" by his "incredible adventure" - from where he stayed in the United States for 30 years to achieving this project in Europe. It originated from the European Infrastructure ELI project in the 2000s. 79 year old Muru said, "We start with a glowing seed with very, very little energy, and it will be magnified millions of times.".

Scientists have been committed to creating more powerful lasers.
However, by the mid-1980s, they encountered a bottleneck as they were unable to increase power without damaging the amplified beam. At that time, Muru and his student Strickland invented a technology called Chirped Pulse Amplification (CPA), which could increase power while maintaining strength safety. Its working principle is to timely stretch the ultra short laser pulse, amplify it, and then compress it together again, thereby generating the shortest and strongest laser pulse in the world's history. It has been applied in corrective ophthalmic surgery, but it also opens the way for scientists to continue breaking through the limits of laser power.
Muru said, "We will use these ultra strong pulses to produce more compact and cheaper particle accelerators to destroy cancer cells.".

-Laser Era-
He added that other possible applications include processing nuclear waste by reducing the duration of radioactivity, or cleaning up accumulated debris in space. For Muru, just as the last century was the electronic century, the 21st century will also be the laser century.
The scale of operation of the research center is dazzling.

The system is capable of reaching a peak of 10 petawatts (to the 15th power of 10 watts) in an ultra short period of time on the order of femtosecond (one billionth of a second). Franck Leibreich, Managing Director of Thales Laser Solutions, stated that "450 ton equipment" needs to be carefully installed to achieve "excellent performance levels.".

The high-tech building of the center costs 320 million euros (350 million US dollars), mainly funded by the European Union.
Thales called it the largest scientific research investment in Romanian history.
Meanwhile, countries such as France, China, and the United States are already advancing their own projects to manufacture more powerful lasers.

Source: Laser Net

İlgili öneriler
  • Credo launches the world's first 800G DSP for linear receiving optical devices, targeting ultra large scale and artificial intelligence data centers

    Credo Technology Group Holding Ltd announced today the launch of the industry's first Dove 800 850G digital signal processor IC, which has been optimized for linear receiving optical devices and is also known as semi retiming linear optical devices in the industry. In LRO transceivers or active optical cables, only the transmission path from the electrical input to the output of the optical path i...

    2023-11-30
    Çeviriyi gör
  • Reshaping the Sky: Laser Scanning Drones Innovate Data Collection

    Imagine soaring above the Earth, the world unfolds in patterns and reliefs, and the terrain whispers its secrets in the wind. Now imagine capturing these whispers and translating them into a digital language to draw our world map with unprecedented accuracy. Welcome to the forefront of laser scanning drones, a technological ballet in the sky where the fusion of flight and laser precision is reshap...

    2024-04-07
    Çeviriyi gör
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    Çeviriyi gör
  • Meltio launches a new blue laser 3D printer M600

    Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications. Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory cost...

    2024-07-06
    Çeviriyi gör
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    Çeviriyi gör