Türkçe

Molecular orientation is key: a new perspective on revealing electronic behavior using two-photon emission spectroscopy

651
2024-03-19 16:20:43
Çeviriyi gör

Organic electronics has aroused great interest in academia and industry due to its potential applications in OLEDs and organic solar cells, with advantages such as lightweight design, flexibility, and cost-effectiveness. These devices are made by depositing organic molecular thin films onto a substrate that serves as electrodes and exerting their effects by controlling electron transfer between the film and substrate. Therefore, understanding the electronic behavior at the interface between the substrate and the thin film, as well as the electronic properties of organic thin films, is crucial for the further development of organic electronics. In addition, simultaneous observation of photocarrier electrons and intramolecular photoexcitation will provide more insights into organic molecular thin films.

Although a technique called photoelectron spectroscopy has been used to study the static electronic states of organic molecule films in detail, accurately detecting the dynamic behavior of electrons attempting to express their functions in devices has always been challenging and hindering progress.

The research team led by Associate Professor Masahiro Shibuta from the Graduate School of Engineering at Osaka City University used two-photon emission spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction to observe the electronic behavior and surface structure of triphenyl molecular thin films deposited on graphite substrates. The results indicate that TP molecules exhibit a special structure, which adsorbs on the substrate in a standing structure. Under light irradiation, two electrons are injected into TP molecules from the substrate, and photoexcited electrons in the molecular thin film are successfully observed simultaneously in a single sample. In addition, strong photoluminescence was also observed on thin films with a special structure consisting of only one layer of molecules, where the molecules were diagonally adsorbed onto the substrate, similar to the case of TP molecules. It is expected that these results will contribute to the development of new luminescent materials and the further development of functional organic electronic devices.

"2PPE spectroscopy is still a new method for evaluating electronic states, but its drawback is that although well optimized measurements are time-consuming, electronic states are sometimes well observed and sometimes not," said Professor Shibuta. Our research findings emphasize that the visibility of electronic states is closely related to the adsorption mode and electronic properties of molecules on the substrate. In other words, not only the type of molecules, but also their arrangement must be appropriately controlled to create a device that can fully demonstrate their functions. I am pleased that our research provides insights for the development of functional materials for practical applications.

Source: Laser Net

İlgili öneriler
  • Fraunhofer ILT develops laser beam shaping platform to optimize PBF-LB process

    Recently, the German research institution Fraunhofer ILT team is collaborating with the Department of Optical Systems Technology (TOS) at RWTH Aachen University to develop a testing system aimed at studying complex laser beam profiles using a new platform. This platform can construct customized beam profiles for laser powder melting (PBF-LB) 3D printing, thereby improving part quality, process sta...

    2024-12-23
    Çeviriyi gör
  • Cobot Systems announces the establishment of a partnership between UR+and its laser welding collaborative robot system

    Cobot Systems announced that it has now become a UR+partner and showcased laser welding unit systems. This honor marks an important milestone in the company's journey of providing widely available automated labor solutions. This approval highlights Cobot Systems' commitment to providing innovative solutions compatible with UoRobot (UR) products, ensuring seamless collaboration with integrated lase...

    2024-05-16
    Çeviriyi gör
  • ICFO launches its 13th subsidiary Shinephi for interferometric imaging

    Barcelona-based photonics research center ICFO has announced the creation of its 13th Spin-off company, Shinephi. The official launch of the company was jointly made at the end of July by Dr. Roland Terborg (CEO and co-founder), Dr. Iris Cusini (CTO and co-founder) and ICREA Prof. at ICFO Valerio Pruneri (Technology Advisor and co-founder), accompanied by Dr. Silvia Carrasco, Vice Director of Inno...

    08-11
    Çeviriyi gör
  • The University of Illinois combines the light emitted by multiple VCSEL into a single coherent mode

    Today, VCSELs (vertical cavity surface-emitting lasers) are used in everything from computer mice to face-scanning hardware in smart phones. They are renowned for their ability to integrate seamlessly into semiconductor chips, VCSELs are still considered to be an active field of research, and many researchers believe there are still important applications waiting to be discovered.The laboratory of...

    08-04
    Çeviriyi gör
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    Çeviriyi gör