Türkçe

Medium-long wavelength infrared quantum cascade laser of MOCVD on silicon

245
2023-08-04 16:26:34
Çeviriyi gör
Us researchers report 8.1 μm wavelength quantum cascade laser (QCL) grown on silicon (Si) by MOCVD [S. Xu et al., Applications. Physics Letters, v123, p031110, 2023]. "There are no previous reports of QCL growth on silicon substrates by metal-organic chemical vapor deposition (MOCVD)," commented the team from the University of Wisconsin-Madison, the University of Illinois at Urbana-Champaign and MicroLink Devices Inc.
 
This integration on silicon could lead to the development of chip scale, reliable and mass-producible photonic integrated circuits (PIC). The researchers contrast this with other integration methods such as wafer bonding: "Hybrid integration methods rely on precise alignment to achieve efficient waveguide to laser optical coupling, which in turn requires tight fabrication machining tolerances. Direct integration onto silicon through heteroepitaxy enables mid-infrared (IR) optoelectronic devices to be integrated with mature CMOS-compatible silicon platforms at low cost and high throughput."
 
Mid-infrared QCL is usually grown on indium phosphide (InP). The team paid particular attention to creating a virtual InP substrate on silicon by combining molecular beam epitaxy (MBE) and MOCVD. MOCVD is superior to MBE in production. "The remaining technical challenge is to overcome the defects and epitaxial growing-related problems caused by large lattice constant and thermal expansion mismatches (e.g., about 8% lattice mismatches) and about 50% thermal expansion coefficient mismatches between InP and primary substrates such as silicon," the researchers comment.
The arsenide portion of the template structure (Figure 1) is a limited company grown on a commercial (001) GaP/Si template (supplied by NAsP III/V) using a solid source MBE. The substrate is nominally coaxial and compatible with high-throughput industrial-scale CMOS electronics production. The initial layer consists of an Indium Gallium Arsenide (InGaAs) dislocation filter layer (DFL) sandwiched in GaAs. By keeping the thickness of the initial arsenide layer at 0.5 μm, the researchers sacrificed some of the potential for reducing the penetration dislocation density (TDD). The GaAs layer grows in two steps, first at low temperatures of 500°C and then at higher temperatures (580/610°C for the lower/upper layers, respectively). As far as the upper layers are concerned, one motivation for doing so is to avoid the escape of indium in InGaAs DFL.
 
The upper InP metaseptic buffer (MBL) portion of the template grows through MOCVD and includes four additional DFLS, consisting of three 2nm/37nm InAs/InP pairs.
 
The QCL is completed using MOCVD and has a total epitaxial thickness (including the metamorphic buffer layer and the laser layer) of approximately 13 μm. QCL/Si did not show cracks, which the team believes could be due to two factors: the small sample size of 1.7cmx1.7cm, and the curvature accumulation mitigated by the 800 μm thick silicon substrate. The TDD for the arsenide portion of the template was estimated to be 1.0 x109 / cm-2. InP MBL reduces this to 7.9x108 /cm 2.
Under pulsed operation, the threshold current density on silicon is 22% lower than that of devices grown on bulk InP substrates during the same process run: in the figure, 1.50kA/cm 2 and 1.92kA /cm 2, respectively. The researchers comment: "This may reflect reduced incorporation of silicon dopants within the active nuclear superlattices due to pre-existing defects or differences in the growth temperatures of the silicon and InP substrate surfaces. In addition, uneven growth around the defect site may reduce carrier mobility and tunneling efficiency, which would explain the higher series resistance observed in devices grown on silicon."
 
The higher the voltage required to provide a given current injection in a silicon-based QCL, the higher the series resistance. Despite the higher series resistance, silicon-based QCL also provides higher peak optical output power: 1.64W for silicon-based devices and 1.47W for INP-based devices. The corresponding slope efficiency is 0.72W/A and 0.65W/A, and the electro-optical conversion efficiency is 2.85% and 2.50%, respectively.
 
The emission spectral analysis showed a variety of modes in the wavelength range 7.6-8.3 μm. The maximum peak values of InP and Si based devices are about 8.1 μm and 8.0 μm, respectively. These wavelengths are slightly shorter than the design target of 8.2 μm. The researchers believe that this difference may be due to local growth changes affecting layer thickness, as shown in X-ray diffraction analysis.
 
Source: Laser Network
İlgili öneriler
  • Tongkuai and KDPOF launch their first 980 nm multi gigabit automotive interconnection system

    Tongkuai Optoelectronic Devices, a global leader in vertical cavity laser emitters (VCSEL) and laser diodes (PD) solutions based in Germany, and a Spanish expert in high-speed optical network solutions, KDPOF, showcased the first 980 nm multi gigabit interconnect system for automotive systems at last week's ECOC.Both companies are committed to achieving the most advanced optical data communication...

    2023-10-17
    Çeviriyi gör
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    Çeviriyi gör
  • The semiconductor laser market is expected to reach $5.3 billion by 2029

    Nowadays, laser technology is widely used in various traditional and emerging fields, including optical communication, material processing, consumer equipment, automotive sensing and lighting, display technology, medical applications for treatment and diagnosis, as well as aerospace and defense.Especially in the semiconductor laser market, it is expected to grow from $3.1 billion in 2023 to $5.2 b...

    2024-12-03
    Çeviriyi gör
  • Sivers Semiconductors, an optoelectronic semiconductor company, splits off its photonics business and goes public independently

    Recently, Sivers Semiconductors, a leading supplier of integrated chips and photonics modules for communication and sensing solutions, announced a significant strategic initiative:It will divest its subsidiary Sivers Photonics Ltd, which has signed a non binding letter of intent (LOI) with byNordic Acquisition Corporation and plans to achieve independent listing through a merger. This move aims ...

    2024-08-26
    Çeviriyi gör
  • Widely tunable terahertz laser enhances photo induced superconductivity in K3C60

    Researchers at the Max Planck Institute for Material Structure and Dynamics (MPSD) in Hamburg, Germany, have long been exploring the effect of using custom laser drivers to manipulate the properties of quantum materials to deviate from equilibrium states.One of the most eye-catching demonstrations of these physics is unconventional superconductors, where enhanced electron coherence and super trans...

    2023-10-13
    Çeviriyi gör