Türkçe

Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

1039
2024-02-19 15:31:14
Çeviriyi gör

A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.

Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use and scalability. The femtosecond laser based technology currently used for printing complex 2D and 3D structures is slow and expensive, and often unaffordable for small and medium-sized batch manufacturing applications. These high-intensity femtosecond lasers can overcome optical diffraction limits, but they are costly. The current technology is still limited by the slow sequential printer system. An alternative light based printing system is needed, which can eliminate expensive lasers while achieving precise and detailed nanoscale printing of polymers and metals.

The potential applications of cost-effective nanoprinting include nanoscale patterned metal films, which are important components in nanodevices and applications, such as electrical interconnections in high-density printed electronics, plasma based metamaterials for biosensing and optical modulation, and microelectromechanical systems.

The SLP system developed by Georgia Institute of Technology provides several advantages for nanoscale printing processes: lower cost, higher speed, and finer resolution. The light source is a type of super light-emitting diode, which is 100 times cheaper than the currently used lasers, thereby reducing the overall printing cost by 10-50 times. By utilizing the specific effects of superluminescent light projection, sharp edge images with minimal speckle patterns can be created, resulting in high-resolution images and structures on polymer and metal based films.

Moreover, by implementing a parallel writing mechanism, the system significantly improves throughput speed, which is 100 times faster than existing metal printing methods and 4 times faster than existing polymer printing methods. These advantages create an easily scalable system for various industrial needs and make nanoscale printing a viable resource for a larger manufacturing audience.

The proposed solution has several advantages. Firstly, it is cost-effective, utilizing existing SLEDs that are much cheaper than commonly used femtosecond lasers, thereby greatly reducing the cost of nanoscale printing. Secondly, due to its parallel writing system, it has higher speed and can achieve faster throughput, especially in metal printing. Compared with existing technologies, it is at least 100 times faster, and polymer printing is at least 4 times faster. Thirdly, unlike other nanoscale printing methods, it provides flexibility by adapting to polymer and metal printing. In addition, it also has scalability, lower lighting costs, higher printing speeds, and the potential for layer stacking to create 3D structures, making it suitable for different manufacturing environments. Finally, due to the use of high numerical aperture oil immersed lenses with superluminescent light, it provides excellent resolution, thereby enhancing oblique light capture and improving printing resolution.

The potential commercial applications of this solution are diverse and have broad prospects. They include micro optical devices for quantum devices, which can fundamentally change various fields by improving the performance of quantum technology. The application of plane optics and photonic quantum devices in photonics provides new avenues for advanced optical systems. In addition, this solution may help to produce printed structures for photoconductive chips, which are key components of technologies such as laser radar systems used in autonomous vehicle, thus contributing to the progress of autonomous vehicle. In addition, this technology can also be used to develop microfluidic chips and micro robots for biomedical and drug delivery applications, thereby achieving precise and efficient delivery mechanisms at the microscale. In addition, it has broad prospects in the field of printed electronics, helping to manufacture electronic components with complex designs and functions. Finally, printed batteries represent another potential application, providing customizable and compact power solutions for various devices and systems. Overall, the versatility of this solution has opened up numerous business opportunities for various industries.

Source: Laser Net

İlgili öneriler
  • Fraunhofer IZM launches quantum cascade project to develop modular laser system

    Creating new laser systems for use in spectroscopy applications is a challenging and costly endeavor. In order to give even small and medium-sized enterprises access to such innovative technology, the Fraunhofer Institute for Reliability and Microintegration (IZM) co-launched the QuantumCascade project to develop a modular laser system for a range of multispectral analytics.This week the IZM repor...

    07-30
    Çeviriyi gör
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    Çeviriyi gör
  • The world's highest power industrial grade fiber laser is released in Tianjin

    On August 31st, Tianjin Kaipulin Optoelectronics Technology Co., Ltd. (hereinafter referred to as Kaipulin), a Tianjin Port Free Trade Zone enterprise, officially released the world's first 200000 watt ultra-high power industrial grade fiber laser, breaking the record for the highest power of industrial grade fiber lasers in the world and marking China's stable position in the international advanc...

    2024-09-02
    Çeviriyi gör
  • Lightmatter announces the first 16 wavelength bidirectional link on single-mode fiber

    Lightmatter, a Boston-based startup developing silicon photonics hardware aimed at AI and high-performance computing, has announced a 16-wavelength bidirectional Dense Wavelength Division Multiplexing optical link operating on one strand of standard single-mode (SM) fiber.Powered by Lightmatter’s Passage interconnect and Guide laser technologies, this development “shatters previous limitations in ...

    08-22
    Çeviriyi gör
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    Çeviriyi gör