Türkçe

FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

486
2024-02-14 10:10:14
Çeviriyi gör

The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jointly committed to creating a compact sensor platform for laser based detection of critical underwater infrastructure such as offshore wind turbines.

Lidar systems excel in long-distance measurement and provide accurate 3D data. Although laser based systems are common for geodetic measurements on land, underwater surveying and topographic measurements traditionally rely on cameras and sonar due to underwater light attenuation and turbidity. However, the two lidar systems launched by Fraunhofer IPM are capable of conducting underwater 3D measurements and aerial depth measurements, marking a significant advancement in this field.

The underwater LiDAR system ULi uses the pulse flight time method to map underwater infrastructure with millimeter level accuracy. The system performs static scanning or scanning while underwater vehicles or ships are in motion. ULi is packaged in a pressure resistant casing, capable of diving into depths of hundreds of meters and measuring objects at distances of tens of meters. The measurement accuracy of this system is ten times that of some sonar systems, and it generates an accurate 3D model of the object.

Through the airborne depth measurement laser scanner ABS, Fraunhofer IPM has launched the first laser system capable of measuring coastal terrain from the air. The system weighs about three kilograms and is the size of a shoe box, with two lasers of different wavelengths. Although traditional laser depth measurement systems are too large and heavy for standard drones, ABS is very lightweight and does not require a flight permit. The system can measure with an accuracy of twice the depth of Secchi, with an accuracy of only a few millimeters.

ULi and ABS systems both use full waveform analysis to check measurement data. This type of signal processing can separate echo sequences modulated by water surface, water surface, and suspended particles, and extract high-resolution terrain data.

In the future, FGI will combine two systems. "The combination of these two systems provides us with a novel and powerful tool for drawing coastlines and 3D measurement objects in deep places," said Professor Juha Hyypp ä, Director of Remote Sensing and Photogrammetry at FGI, excitedly. We will see unprecedented levels of data quality.

The CoLiBri research project funded by the Fraunhofer Association is a collaborative project between FGI, Fraunhofer IPM, and the Freiburg Center for Sustainable Development. The project aims to develop a comprehensive monitoring process for underwater infrastructure and coastal areas, promote collaborative use of the system, and evaluate the potential of its various applications.

Source: Laser Net

İlgili öneriler
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    Çeviriyi gör
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Çeviriyi gör
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    Çeviriyi gör
  • APE 2025 is about to take place

    The Asia Optoelectronic Expo 2025 (APE 2025) will be held from February 26 to 28, 2025 at the Marina Bay Sands Convention and Exhibition Centre in Singapore. It covers products such as information and communication, optics, lasers, infrared, sensing, display, quantum, and is a one-stop optoelectronic comprehensive platform for the optoelectronic industry and application fields; The exhibition focu...

    02-18
    Çeviriyi gör
  • The Future of Data Center Communication: Quantum Dot Semiconductor Comb Laser

    In the constantly evolving field of technology and data communication, researchers have made significant breakthroughs: developing a continuous wave O-band quantum dot semiconductor comb laser for wavelength division multiplexing optical interconnection. With its impressive performance characteristics, this development is expected to completely change the way we manage and transmit data, especiall...

    2024-02-21
    Çeviriyi gör