Türkçe

Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

397
2024-02-03 10:38:25
Çeviriyi gör

Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.

In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the comprehensive industrial application of this technology.

This achievement will not only bring practical benefits to companies seeking deeper penetration welding, but also significantly improve welding quality, reduce oxidation problems, and minimize the time required for cleaning parts after welding.

According to CVE, vacuum laser welding, as a relatively new connection technology, has a welding depth 2-3 times that of traditional laser welding methods. However, the issue of optical pollution has always hindered the widespread application of this technology in industry.

The optical protection system of CVE ensures that the cleanliness of welded components is comparable to that of electron beam welding, while also ensuring a longer lifespan of the laser coupling window. Low cost consumable window, continuously welded at low power (3kW) for up to 3 hours without significant weld degradation.

In the past two years, with funding support from the UK Innovation UK, teams from CVE and Cranfield University have jointly established testing systems, conducted in-depth research on various aspects of vacuum laser technology, and experimented with various concepts and solutions. The experimental data of these systems were used to develop an optical protection system that can operate at extremely low levels of particle generation.

Currently, CVE is working on manufacturing vacuum laser welding machines using this technology. The company stated that its optical protection system ensures the cleanliness of welded components comparable to electron beam welding. This breakthrough technological advancement will provide global engineers with more welding options and inject new vitality into innovation and development in the industrial manufacturing field.

Source: OFweek Laser Network

İlgili öneriler
  • The construction of Hefei Advanced Light Source Project held a launch ceremony, expected to be completed and released in 5 years

    Recently, in the Future Science City of Hefei City, Anhui Province, the National Major Science and Technology Infrastructure Project and Supporting Projects of Hefei Advanced Light Source announced the start of construction, with a planned land area of approximately 656 acres. The first phase of the project is expected to be completed by September 2028.After completion, it will become an internati...

    2023-09-23
    Çeviriyi gör
  • A replica of an arcade made with a 3D printer in the 1970s

    A game museum has 3D printed a replica of a historic arcade computer space. The arcade museum in Stroud, Gloucestershire lacks the first commercial arcade video game. They collaborated with Heber company to create a real replica. Neil Thomas, the director of the arcade museum, said that because it is a replica, not an original, they are not "afraid" of letting people play with it.A spokesperson...

    2024-05-29
    Çeviriyi gör
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Çeviriyi gör
  • The University of Rochester has received nearly $18 million to build the world's highest power laser system

    After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).EP-OPAL is a new fac...

    2023-09-28
    Çeviriyi gör
  • Panacol showcases a new optical grade adhesive on Photonics West

    Panacol will showcase new optical grade resins and adhesives for embossing and optical bonding applications at the SPIE Photonics West exhibition held in San Francisco, California, USA from January 30 to February 1, 2024.These new adhesives can be used for sensors in lightweight carpets, smart devices, and wearable devices in the automotive industry, or for generating structured light in projector...

    2023-12-12
    Çeviriyi gör