Türkçe

Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

892
2024-02-03 10:38:25
Çeviriyi gör

Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.

In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the comprehensive industrial application of this technology.

This achievement will not only bring practical benefits to companies seeking deeper penetration welding, but also significantly improve welding quality, reduce oxidation problems, and minimize the time required for cleaning parts after welding.

According to CVE, vacuum laser welding, as a relatively new connection technology, has a welding depth 2-3 times that of traditional laser welding methods. However, the issue of optical pollution has always hindered the widespread application of this technology in industry.

The optical protection system of CVE ensures that the cleanliness of welded components is comparable to that of electron beam welding, while also ensuring a longer lifespan of the laser coupling window. Low cost consumable window, continuously welded at low power (3kW) for up to 3 hours without significant weld degradation.

In the past two years, with funding support from the UK Innovation UK, teams from CVE and Cranfield University have jointly established testing systems, conducted in-depth research on various aspects of vacuum laser technology, and experimented with various concepts and solutions. The experimental data of these systems were used to develop an optical protection system that can operate at extremely low levels of particle generation.

Currently, CVE is working on manufacturing vacuum laser welding machines using this technology. The company stated that its optical protection system ensures the cleanliness of welded components comparable to electron beam welding. This breakthrough technological advancement will provide global engineers with more welding options and inject new vitality into innovation and development in the industrial manufacturing field.

Source: OFweek Laser Network

İlgili öneriler
  • GlobalFoundries collaborates with Corning to develop co packaged optical devices

    Chip manufacturer GlobalFoundries (GF) has partnered with fiber optic giant Corning to provide co packaged optical (CPO) interconnects for artificial intelligence data centers.The firms say that Corning’s “GlassBridge” technology, a glass-waveguide based edge-coupler compatible with the v-grooves used in GF’s silicon photonics platform, is wanted for high-bandwidth, power-efficient optical links.“...

    10-10
    Çeviriyi gör
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    Çeviriyi gör
  • Photon chips help drones fly unobstructed in weak signal areas

    With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.Using this quantum technology, scientists aim to provide the same ...

    2023-10-28
    Çeviriyi gör
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    Çeviriyi gör
  • Scientists are using lasers to create lunar paving blocks

    Original Hal Bowman 9000 Scientific RazorThe 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAMBy using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these exp...

    2023-10-14
    Çeviriyi gör