Türkçe

From Colored Glass Windows to Lasers: Nanogold Changes Light

791
2024-01-02 15:31:28
Çeviriyi gör

For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.

Now, researchers are preparing to push nano plasma technology, which was once used for art, towards emerging applications in photonics, sensing, and amplification.

Due to the ongoing challenge of manufacturing metal nanoparticles by precisely controlling the size, concentration, and dispersion of the glass itself, research on these unique plasma characteristics has slowed down. Early manufacturing techniques have been proven to be unreliable when applied to tellurite glass, which also possesses the ideal quality of embedded nanophotonic devices.

However, the implementation of many attractive applications of tellurites largely relies on the introduction and control of nanoscale metal features to propagate longitudinal light through plasma. Despite great interest, reliably combining customized metal nanostructures to activate plasma effects in tellurite glasses remains a persistent technical obstacle that hinders progress.

Tellurite glass has become a very promising medium for embedded photonic devices. It has unique properties, including wide infrared transparency covering half of the solar spectrum, high solubility allowing for strong luminescence of rare earths, and relatively low processing temperatures. Tellurite glass has moderate phonon energy and minimal interference with radiative transitions, thus achieving effective light emission and amplification. In addition, tellurite glass exhibits extraordinary anti crystallization stability.

These comprehensive characteristics make tellurite glass an ideal platform for developing active and passive photonic components, from amplifiers and color converters to planar waveguides and lasers. Specifically, its optical advantages provide the ability to guide light and utilize light transitions of rare earth elements in common material systems.

The latest research in collaboration between Australia and Germany has paved the way for the development and exploration of plasma enhanced optical effects in this special medium by developing a technology for systematically manufacturing gold nanoparticles with adjustable plasma response inside tellurite glass. Controlling these plasma entities at the nanoscale opens up possibilities for advancing photonic devices containing tellurite materials.

These material scientists have developed new technologies to systematically manufacture gold nanoparticles, providing adjustable plasma resonance bands in tellurite glass substrates. Their research provides a roadmap for consciously designing the characteristics of nanoparticles to advance photonics and sensing research.

By addressing the ongoing challenge of reliably manufacturing gold nanoparticles with adjustable plasma response, researchers have opened the door to exploring the plasma effect in tellurite glasses. Their technology has overcome previous obstacles to such research, allowing for conscious control of nanoparticle properties such as size and spacing.

Source: Laser Net

İlgili öneriler
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the generation of third harmonic in laser air filamentation

    Recently, the team from the State Key Laboratory of Intense Field Laser Physics, Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences found that the third-order harmonics induced by air filamentation of high repetition rate femtosecond lasers have significant self jitter. To solve this bottleneck problem, a solution based on an external DC electric field was proposed, which sign...

    2024-10-10
    Çeviriyi gör
  • JMP: Small hole mode swing laser welding of nickel based high-temperature alloys - simulation, experiment, and process diagram

    IntroductionThe small hole mode swing laser welding has gained increasing recognition due to its ability to bridge gaps, refine microstructures, and enhance the mechanical properties of welds. However, the effects of amplitude, frequency, welding speed, laser beam power, and beam radius on heat flux distribution, melting mode, and three-dimensional temperature field have not been well understood. ...

    04-11
    Çeviriyi gör
  • Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale la...

    2023-10-12
    Çeviriyi gör
  • Swiitol Launches E24 Pro: A Breakthrough in Laser Engraving Technology

    In order to completely change the world of laser engraving, Swiitol has launched the E24 Pro, a 24W integrated laser engraving machine with cutting-edge features and functions. The Swiitol E24 Pro showcases an innovative integrated structure laser engraving machine made of durable aluminum alloy. It is worth noting that the device can be used out of the box without installation, providing users wi...

    2023-11-23
    Çeviriyi gör
  • Data from the 2023/2024 fiscal year of Tongkuai Group shows a decline in sales and order volume

    German high-tech company TRUMPF has released data for the 2023/24 fiscal year: sales decreased by 3.6% to 5.2 billion euros, and orders decreased by 10.4% to 4.6 billion euros. The global number of employees has increased by 650, with a total of over 19000 employees, and the number of employees in Germany has increased by nearly 400.As of June 30, 2024, at the end of the 2023/24 fiscal year, the s...

    2024-10-21
    Çeviriyi gör