Türkçe

The new method can maintain beam quality while significantly improving the power of fiber lasers

387
2023-12-22 14:25:39
Çeviriyi gör

The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.

The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated new applications of multimode fibers, successfully increasing the power of fiber lasers by 3 to 9 times while maintaining beam quality, enabling them to focus on targets from a long distance.

This important research achievement was published in the journal Nature Communications, and the breakthrough stimulated Brillouin scattering (SBS) suppression and output focusing schematic diagram showcases its technical principles.

This innovative technology excites multiple modes in multimode fibers, significantly increasing the SBS threshold power. The core lies in generating diffraction limited light spots near the fiber output by modulating the relative phase of the fiber mode, and producing a focusing effect through lens collimation.

Researchers say that this new method will bring extremely high power output to fiber lasers, which will be widely used in fields such as defense industry, remote sensing applications, and gravitational wave detection, bringing unprecedented benefits for future development.

In response to the popularity of low-cost drones in modern battlefields, high-power fiber lasers are particularly important. It has the advantages of extremely low single launch cost and light speed operation, which can resist large-scale drone attacks, maintain the launch capability of military assets and vehicles, and ensure the execution of critical combat tasks.

This advanced technology not only has potential deterrent effects in the field of defense, but also aligns with the goals of defense strategic assessment and AUKUS Pillar 2.

Dr. Ori Henderson Sapir, a researcher at the Institute of Photonics and Advanced Sensing at the National University of Australia, stated that Australia has a long history of innovative fiber optic technology, which will put it in a world leading position in developing the next generation of high-power fiber lasers, not only limited to the defense field, but also contributing to new scientific discoveries.

Source: Laser Net

İlgili öneriler
  • UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

    According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 t...

    2023-10-09
    Çeviriyi gör
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    Çeviriyi gör
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    Çeviriyi gör
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Çeviriyi gör
  • The femtosecond laser was used to manufacture a magnetically responsive "Janus Origami" robot, which realized the effective integration of various droplet manipulation functions

    Recently, the reporter learned from the University of Science and Technology of China that Professor Hu Yanlei's team and his collaborators in the micro-nano Engineering Laboratory of the School of Engineering Science and Technology of the School have prepared a magnetic-responsive double-God origami robot that can be used for cross-scale droplet manipulation using femtosecond laser micro-nano man...

    2023-09-12
    Çeviriyi gör