Türkçe

EV Group launches EVG 850 NanoClean system for ultra-thin chip stacking for advanced packaging

710
2023-12-08 14:38:24
Çeviriyi gör

EV Group, a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets, yesterday launched the EVG850 NanoClean layer release system, which is the first product platform to adopt EVG's revolutionary NanoClean technology.

 

The EVG850 NanoClean system combines infrared lasers with specially formulated inorganic release materials, and can release bonding layers, deposition layers, or growth layers with nanoscale precision from silicon substrates on mature and mass-produced platforms. Therefore, EVG3 NanoClean does not require a glass carrier and can achieve ultra-thin chip stacking for advanced packaging, as well as ultra-thin 3D layer stacking for front-end processing, including advanced logic, memory, and power device formation, to support future 3D integration roadmaps.

The first batch of EVG850 NanoClean systems has been installed at the customer's factory and is currently undergoing nearly twenty product demonstrations with customers and partners at the customer's site and EVG headquarters.

Silicon carriers are beneficial for 3D stacking and backend processing
In 3D integration, glass substrates have become a mature method of constructing device layers through temporary bonding with organic adhesives, using ultraviolet wavelength lasers to dissolve the adhesive and release the device layer, and then permanently bonding it onto the final product wafer. However, it is difficult to process glass substrates using semiconductor wafer fab equipment primarily designed around silicon, and expensive upgrades are required to achieve glass substrate processing. In addition, organic adhesives are usually limited to processing temperatures below 300 ° C, which limits their use in back-end processing.

Adding an inorganic release layer to the silicon carrier can avoid compatibility issues between these temperatures and the glass carrier. In addition, infrared laser induced cutting has nanometer level accuracy and can process extremely thin device wafers without changing the recording process. The subsequent stacking of thin device layers can achieve higher bandwidth interconnection and provide new opportunities for chip design and segmentation of next-generation high-performance devices.

The next generation of transistor nodes requires thin layer transmission technology
At the same time, the transistor roadmap for sub 3 nanometer nodes requires new architectures and design innovations, such as buried power rails, backside power supply networks, complementary field-effect transistors, and 2D atomic channels, all of which require layer transfer of extremely thin materials. The silicon carrier and inorganic release layer support the process cleanliness, material compatibility, and high processing temperature requirements of the front-end manufacturing process. However, so far, the silicon carrier has to be completely removed through grinding, polishing, and etching processes, which results in micrometer level changes on the surface of the working device layer, making this method unsuitable for thin layer stacking at advanced nodes.

Releasable fusion
The EVG850 NanoClean uses infrared laser and inorganic release materials, which can perform laser cutting from silicon charge carriers with nanoscale accuracy in the production environment. This innovative process eliminates the need for glass substrates and organic adhesives, making the transfer of ultra-thin layers compatible with the front-end processes of downstream processes. The high temperature compatibility of EVG850 NanoClean supports the most demanding front-end processing, while the room temperature infrared cutting step ensures the integrity of the device layer and carrier substrate. The layer transfer process also eliminates the need for expensive solvents related to substrate wafer grinding, polishing, and etching.

The EVG850 NanoClean and EVG's industry-leading EVG850 series automatic temporary bonding/debonding and silicon on insulator bonding systems are based on the same platform, featuring a compact design and HVM validated wafer processing system.

Dr. Bernd Thallner, Enterprise R&D Project Manager at EV Group, stated: Since its establishment over 40 years ago, EVG's vision has always been to be the first to explore new technologies and serve the next generation of applications in micro and nano processing technology. Recently, 3D and heterogeneous integration have become key driving factors for improving the performance of next-generation semiconductor devices. This in turn makes wafer bonding a key process for continuing to expand PPACt. Through our new EVG850 NanoClean system, EVG integrates the advantages of temporary bonding and melt bonding into the next generation of semiconductor devices In a multifunctional platform, we support our customers in expanding their future roadmap in advanced packaging and next-generation scaling transistor design and manufacturing.

Source: Laser Net

İlgili öneriler
  • The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

    Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.According to Han Htoon, a researc...

    2023-09-01
    Çeviriyi gör
  • Instrument Systems will showcase advanced optical measurement solutions for display technology in San Jose next week

    In the 2024 Showweek Germany Pavilion, Instrument Systems will showcase the LumiTop series, a series of imaging colorimeters designed specifically for high-precision and fast 2D measurements, to meet specific needs in AR/VR, automotive, and continuous production environments.The LumiTop 5300 AR/VR is a high-resolution camera developed specifically for evaluating near eye displays, which will recei...

    2024-05-09
    Çeviriyi gör
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    Çeviriyi gör
  • Laser giant seeks $100 million financing for $422 million debt restructuring

    On August 6th local time, Luminar, a leading publicly traded company in the field of LiDAR, announced a $422 million debt restructuring and raised $100 million in new capital. This measure marks Luminar taking solid steps in optimizing its capital structure and enhancing its financial stability.In early May this year, this laser radar manufacturer released an open letter disclosing a major strateg...

    2024-08-09
    Çeviriyi gör
  • Photonic time crystals triggered by laser pulses may open the door to a new branch of optics

    When scientists discovered that laser pulses can rapidly cause refractive index changes in the medium, resulting in "photonic time crystals (PTC)" in the near-visible light band, the door to a disruptive new application in optics seemed to quietly open.Scientists have a certain degree of understanding of photonic crystals and time crystals, the two have almost nothing in common, the basic common p...

    2023-09-07
    Çeviriyi gör