Türkçe

Due to research conducted by scientists from South Korea and the UK, the power of lasers will increase by one million times

732
2023-11-27 14:11:24
Çeviriyi gör

Due to research conducted by scientists from South Korea and the UK, the power of lasers will be able to increase by one million times. The researchers plan to apply this improvement for scientific purposes.

The study was led by representatives of Strathclyde University and the Korea Institute UNIST and GIST. Behind the scenes footage of their work in the journal Nature Photonics. It has been proven that the key to success is to conduct simulations to demonstrate what changes are needed to significantly improve the capability of the device that emits laser pulses.

Based on their analysis, the research team concluded that the breakthrough moment will be to use the plasma density gradient to initiate the photon fusion process. If theoretical results are translated into actual situations, the increase in laser power compared to current results may exceed one million times.

What kind of results are we discussing? I just want to say that the power of the laser used so far - of course, the most powerful laser - is about 10 petawatts. This device is called Vulcan 20-20 and is expected to have a power of 20 petawatt. On the other hand, the upper atmosphere of Earth receives 173 watts of sunlight, of which about one-third of the radiation reaches the surface of our planet.

Powerful lasers can be used for various experiments, such as simulating the conditions inside stars.

As explained by experts, the use of terawatt or petawatt lasers makes it possible to create a new generation of laser plasma accelerators. A sufficiently powerful laser also provides answers to fundamental questions, such as the essence of matter and vacuum. These are just some of the issues covered by the research. Some even talk about conducting experiments at the so-called Schwinger limit, which assumes that light can be converted into matter.

All ideas related to the potential capabilities of this extremely powerful laser will be tested by research team members from the UK and South Korea. According to the representative of Strathclyde University, understanding the nature of matter and vacuum with intensity exceeding 1024 watts per square centimeter is one of the greatest challenges facing modern physics. Thanks to high-energy lasers, it is also possible to simulate the interior of stars and different parts of the solar system.

Source: Laser Net

İlgili öneriler
  • Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

    Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project,...

    2023-09-27
    Çeviriyi gör
  • What are the "unique secrets" of each family in terms of breaking the game and high reaction materials?

    Laser is considered a sharp sword that cuts iron like mud, but even sharper swords can have tricky moments. For example, in certain scenarios, there are materials with higher reflectivity, such as silver, copper, etc., known as "high reflection materials". High reflective materials have a low absorption rate for lasers, making them difficult to process and potentially causing equipment failure or ...

    2023-11-06
    Çeviriyi gör
  • Ireland's first biological Brillouin microscope at Trinity College Dublin

    A project at Trinity College Dublin is now hosting Ireland's first BioBrillouin microscope instrument, applying Brillouin spectroscopy to life sciences and medicine.This should in particular enhance the College's research into cellular and tissue mechanics for the study of inflammation, cancer, and developmental biology.Brillouin microscopy offers a route to optical investigation of a biological s...

    07-14
    Çeviriyi gör
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    Çeviriyi gör
  • Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

    Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation...

    2023-09-07
    Çeviriyi gör