Türkçe

Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

190
2023-11-17 14:08:46
Çeviriyi gör

Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.

It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.
The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute zero degrees Celsius.

Scientists from a high-tech facility on the West Coast of the United States have launched the world's most powerful X-ray laser for the first time. With these ultra bright X-ray pulses, they will conduct measurements, which will enable us to understand the atomic and molecular worlds.

The LCLS-II facility is an upgraded version of the linear accelerator coherent light source. It is located at the SLAC National Accelerator Laboratory of the US Department of Energy, near Stanford University in Menlo Park, California. LCLS-II is a so-called free electron laser, which means it accelerates the electron beam to near the speed of light and then sends the electron beam through a series of magnetic fields. These magnetic fields cause the path of electrons to oscillate, and due to these oscillations, electrons emit very strong X-rays, which can be used to image molecules and other things and observe how the atoms inside interact.

LCLS-II can emit up to 1 million X-ray pulses per second, 8000 times more than early LCLS lasers. When the increased pulse rate is combined with an increase in the number of electrons per pulse, the brightness of the new facility is more than 10000 times that of its predecessor.

Each pulse is very short. For high-energy X-rays, the pulse range is 10 to 50 femtoseconds; For low energy X-rays, the pulse can be stretched to 250 femtoseconds. It can also generate very short pulses, although in such a short period of time, each pulse is not as bright as usual.

With such short wavelengths, short pulses, and rapid repetition, scientists can use this facility to observe the occurrence of chemical reactions. Essentially, each pulse can image the configuration of the atoms involved in the reaction, and then link individual images together, much like a molecular clay film. As early as 2018, the LCLS facility was able to produce a movie about the chemical processes that occur in human vision and photosynthesis. The entire process only takes 1000 femtoseconds.

More broadly, the LCLS-II facility will be able to withstand up to one angstrom. This ability will enable researchers to study many different atomic processes, from those in biological systems to those in photovoltaic and fuel cells. Laser will also help illuminate superconductivity, ferroelectricity, and magnetism.

A very cool technology
One of the key components of upgrading is the installation of revolutionary technologies. Although early accelerators operated at room temperature, the upgraded LCLS-II used superconducting accelerator components, which allowed it to operate at low temperatures near absolute zero. LCLS-II also has better magnets to swing the electron beam.

Although LCLS-II has just started operating, the success of early LCLS accelerators has given researchers optimism. More than 3000 scientists have used the facility and published over 1450 publications. Time will reveal any new insights that this powerful laser possesses.

Source: Laser Network

İlgili öneriler
  • Integra Optics launches groundbreaking XGS-PON and GPON combined OLT SFP+optical transceivers

    Infinite Electronics brand and innovative operator level global supplier of fiber optic components, Integra Optics, announced the launch of its latest innovative product, the XGS-PON and GPON combination OLT SFP+BiDi optical transceiver module. This module integrates the passive optical network OLT and GPON OLT optical modules of XG (S), promoting seamless network rate deployment within the optica...

    2024-04-11
    Çeviriyi gör
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    Çeviriyi gör
  • Improvements in LiDAR technology will help NASA scientists and explorers perform remote sensing and measurement functions

    Improvements in LiDAR technology will assist NASA scientists and explorers in remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance, and navigation.Like sonar that uses light instead of sound, LiDAR technology is increasingly helping NASA scientists and explorers with remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance...

    2023-10-26
    Çeviriyi gör
  • The UK team collaborated to evaluate epitaxial materials for surface-coupled lasers

    Sivers Photonics, a leading UK-based supplier of optical fiber communications and III-V semiconductor Photonics devices, has announced that it has received an initial order from UK-based laser developer Vector Photonics to evaluate epitaxial materials for a new next-generation surface-coupled laser project.The order, which includes laser manufacturing and life testing, will be the first time the t...

    2023-09-11
    Çeviriyi gör
  • The world's highest power industrial grade fiber laser is released in Tianjin

    On August 31st, Tianjin Kaipulin Optoelectronics Technology Co., Ltd. (hereinafter referred to as Kaipulin), a Tianjin Port Free Trade Zone enterprise, officially released the world's first 200000 watt ultra-high power industrial grade fiber laser, breaking the record for the highest power of industrial grade fiber lasers in the world and marking China's stable position in the international advanc...

    2024-09-02
    Çeviriyi gör