Türkçe

Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

634
2023-11-15 13:53:24
Çeviriyi gör

Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that it may play a role in applications such as sensing and spectroscopy.

The working principle of a laser is that light is reflected back and forth in an optical cavity composed of a gain medium sandwiched between two mirrors. When light bounces back and forth between mirrors, the gain medium amplifies it, stimulates more light emission, and generates coherent beams with a very narrow spectral range.

In 1992, the first organic laser was introduced. However, the laser uses a separate light source to drive its gain medium, which makes its design complex and limits its application. Since then, researchers have been trying to find a way to manufacture an organic laser that only uses an electric field to drive it, but without success. Therefore, in the past 30 years, this has been a huge challenge in this field, "explained physicist Ifor Samuel, who led the new study together with his colleague Graham Turnbull from St. Andrews.

Firstly, breaking the world record
Samuel explained that there are two main strategies for designing electrically driven organic lasers. The first method is to place electrical contacts on organic laser gain media and inject charges through them. However, it is difficult to manufacture a laser in this way, as the injected charge absorbs light from the emission spectrum of the material through the so-called triplet state. The contacts themselves also absorb light. Due to the fact that lasers require gain to exceed loss, this light absorption is a huge obstacle, "Samuel said.

In the new study detailed in the journal Nature, researchers solved this problem in a second way: by keeping charges, triplets, and contacts at a distance from the laser gain medium in space. However, achieving this is not an easy task, as it means they need to manufacture a pulse blue organic light emitting diode with world record light output intensity to drive the gain medium. Then, they need to find a way to couple all the light from OLEDs into a laser made of a layer of semiconductor polymer that emits green light.
In order to manufacture this type of device, we initially manufactured OLEDs and laser cavities separately, and then transferred OLEDs onto a substrate with a thickness of only a few micrometers, onto the surface of the laser waveguide, "he said. The careful integration of these two parts is crucial for the gain medium to obtain strong electroluminescence generated inside OLEDs.

To complete the design, the team used diffraction gratings in thin film lasers to provide distributed feedback of stimulated emission on the thin film plane, while diffracting the output laser beam from the surface.

Slow technological acceleration
Organic semiconductor devices are widely considered a "slow" technology because the charge mobility in organic materials is usually several orders of magnitude lower than that of silicon or III-V group crystal semiconductors. However, Turnbull believes that the team's innovation may begin to change this perception. Our work is pushing these materials into a very fast and intensive operational solution, "he told Physical World.

As for applications, researchers say that the new all electric organic semiconductor laser will be directly integrated into real-time medical devices that use light based sensing and spectroscopy to diagnose diseases or monitor symptoms. Electric drives eliminate the need for individual light sources to pump them, which should expand potential applications, "Turnbull said.

However, further work needs to be done to optimize the output power and efficiency of the new laser and expand its light output in the visible spectrum. The next major challenge in this field will be to manufacture continuous wave organic semiconductor lasers, which will require further control of the troublesome triplet population, "concluded Turnbull.

Source: Laser Network

İlgili öneriler
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    Çeviriyi gör
  • Leica Measurement System Development First Person Laser Scanner

    Leica Geosystems, a subsidiary of Hexagon, has developed Leica BLK2GO PULSE, its first person laser scanner, which combines LiDAR sensor technology with the original Leica BLK2GO shape. The technology will be released in early 2024.The scanner provides users with a fast, simple, and intuitive first person scanning method that can be controlled through a smartphone and provides real-time full color...

    2023-10-19
    Çeviriyi gör
  • In depth understanding of the formation of condensation rings in laser spot welding - machine learning and molecular dynamics simulation

    Researchers from the Pacific Northwest National Laboratory and Johns Hopkins University have reported that machine learning and molecular dynamics simulations can help to gain a deeper understanding of the formation of condensation rings in laser spot welding. The related paper titled 'Machine learning and molecular dynamics simulations aided insights into conditioned ring formation in laser spot ...

    2024-12-21
    Çeviriyi gör
  • Laser Photonics Corporation sets high growth strategy for 2025

    Recently, laser cleaning equipment manufacturer Laser Photonics Corporation (LPC) announced its ambitious 2025 growth strategy, emphasizing innovation, strategic investment, and market expansion. LPC Executive Vice President John Armstrong stated:With a solid foundation laid in 2024, we will enter 2025 with clear momentum and a firm focus on growth. The progress we made last year - strengthening...

    01-20
    Çeviriyi gör
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Çeviriyi gör