Türkçe

Semiconductor lasers will support both TE and TM modes

854
2023-10-20 11:51:32
Çeviriyi gör

Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:

A chip without ridge waveguide design and narrow ridge waveguide chip B. For coherent light sources, the far-field pattern is essentially the Fourier transform of the near-field pattern (mode shape in the device).
The far field pattern of a single mode is a moderate 30 ° divergence angle for a ridge waveguide device, while the far field pattern of a large area device is stretched very long, emitting several degrees in the plane and very much out of the plane. It is not difficult to couple to optical fibers in the later stage.

The second reason why lasers require single mode is that it is necessary for devices to achieve true single wavelength. DFB laser is a single-mode laser prepared using periodic gratings, which is based on the effective refractive index to reflect a single wavelength. Different transverse modes have different effective refractive indices, so multimode waveguides with DFB gratings can have more than one wavelength output.

In reality, dielectric waveguides are simply first-order models of the actual waveguides of semiconductor lasers. The waveguide region of the laser is also the gain region, so the refractive index has a complex part associated with the gain (or the loss component in the absence of current).

The optical mode becomes "gain oriented" and refractive index oriented, without the need for a truly accurate optical cut-off design. The trend of this gain oriented is to favor the propagation of a single mode. In practice, the far-field and mode structure details calculated based on the refractive index distribution may differ significantly from the measured values of manufactured devices.

As a waveguide, semiconductor lasers will support both TE and TM modes, with TE being the transverse electric field and TM being the transverse magnetic field. However, in semiconductor quantum well lasers, the light emitted is mainly TE polarized. This is based on the different reflection coefficients of TE and TM modes at the cavity surface, and most lasers are inherently highly polarized.

For TE and TM modes, only certain discrete angles can become guiding modes, thereby propagating along the waveguide. Just as the light in a etalon must undergo phase length interference to support a specific wavelength, the light in a waveguide must also undergo phase length interference to allow a specific "mode" to exist, corresponding to a specific incident angle.

In the analysis of waveguides, the typical approach is to fix the wavelength and naturally choose the angle of its propagation. The reason is the same, assuming that the plane wave in the cavity originates from all points on the bottom edge. If the round-trip distance is not an integer multiple of the wavelength, the destructive interference will ultimately cause the light wave to disappear.

Source: Chip Process Technology

İlgili öneriler
  • China University of Science and Technology has made progress in in-situ monitoring of thermal runaway in lithium-ion batteries with optical fibers

    Recently, the team of Professor Sun Jinhua and researcher Wang Qingsong of the University of Science and Technology of China and the team of Professor Guo Tuan of Jinan University have made important achievements in the field of early warning of thermal runaway optical fiber detection of lithium-ion batteries.A high-precision, multi-mode integrated fiber optic device that can be implanted in...

    2023-09-04
    Çeviriyi gör
  • Monport Laser's grand anniversary event ignited a boom in laser engraving industry

    Monport Laser, a leading manufacturer of laser engraving machines, is pleased to announce an exciting anniversary on its website. The event will mark the anniversary of Monport Laser and offer customers a range of exclusive offers and promotions. The event will highlight Monport Laser's commitment to innovation, customer satisfaction and the magic of laser engraving.The Monport Laser Anniversary...

    2023-08-04
    Çeviriyi gör
  • Advanced optical giant Schott announces completion of Malaysia factory

    Recently, German optical giant SCHOTT is pleased to announce that its advanced production plant located in Gulim, Kedah, Malaysia has been successfully completed. This milestone event was celebrated with the joint witness of employees, clients, and representatives from the Malaysian Investment Development Authority (MIDA).The completion of the new factory marks a significant increase in Schott's...

    2024-10-16
    Çeviriyi gör
  • The visual LiDAR fusion calibration board improves the detection accuracy of the vehicle navigation system and does not need to be adjusted before sailing

    At present, the navigation system has become an important equipment on ships, aircraft, missiles, automobiles and other navigational vehicles. Laser Doppler radar has become an important development direction in the field of velocity measurement technology because of its high accuracy, good spatial resolution and fast dynamic response. The application of the three-beam Doppler Lidar in the...

    2023-08-23
    Çeviriyi gör
  • Personnel changes at Optimax, a precision optical manufacturer

    On November 25th, Optimax, the largest precision optics manufacturer in the United States, announced the appointment of Joseph Spilman as CEO and Pete Kupinski as President. After developing a comprehensive succession plan, Optimax CEO Rick Plympton will retire along with President and Founder Mike Mandina.Mandina stepped down in 2021 and passed on the title of CEO to Spilman, strategically appo...

    2024-11-28
    Çeviriyi gör