Türkçe

WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

199
2023-10-10 14:20:06
Çeviriyi gör

The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.

Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including abandoned satellites, are accumulating around Earth. The more debris in orbit, the higher the risk of some of it colliding with manned and unmanned space assets. He said he believes the best opportunity to prevent these collisions is to install multiple lasers on space platforms. Artificial intelligence driven lasers can be manipulated and work together to quickly respond to fragments of any size.

Lee is an assistant professor of mechanical and aerospace engineering at the Benjamin M. Statler School of Engineering and Mineral Resources, and a potential breakthrough research recipient of NASA's prestigious Early Career Teacher Award in 2023. NASA is supporting Lee's rapid response debris removal research with an annual funding of $200000 for a period of three years.

This work is still in its early stages, and the research team is currently verifying that their proposed algorithm for running laser systems will be an effective and cost-effective solution. But long-range vision is "the active execution of orbital maneuvers and collaborative resolution of orbital debris by multiple space-based lasers," Li said. This may lead to timely collision avoidance with high-value spatial assets.

Our goal is to develop a reconfigurable space-based laser network and a set of algorithms that will become enabling technologies to make this network possible and maximize its advantages.

If a natural object, such as a meteoroid, collides with an artificial object, such as the wreckage of a carrier rocket, the resulting debris can spread quickly enough, and even small fragments like paint may have the power to pierce the side of observation or telecommunications satellites or the International Space Station.

This has become an urgent issue as space becomes increasingly chaotic. In particular, the Earth's low orbit has attracted commercial telecommunications systems such as SpaceX's Starlink, which use satellites to provide users with broadband internet. Low orbit is also the location of satellites used for weather forecasting and land cover analysis, and it is the hub for deep space exploration.

The increase in the number of objects increases the risk of collisions, endangers manned missions, and endangers high-value scientific and industrial missions, "Li said. He added that collisions in space can trigger a domino effect called "Kessler Syndrome," which can cause a chain reaction and increase the risk of further collisions, "making space unsustainable and hostile.

Other researchers are developing debris removal technologies such as hooks, harpoons, nets, and cleaners, but these technologies are only applicable to large debris. Lee's method should be able to handle fragments of almost any size.

The algorithm suite that Lee's team will develop may be suitable for lasers installed on large satellites, or may provide power for lasers living on their own dedicated platforms. As part of his research, he will evaluate the various forms that laser networks may take. Regardless of the method, the technology will be able to make many decisions on its own, independently execute actions, and set priorities.

The system will determine which laser combination targets which fragments while ensuring that the resulting trajectory remains collision free.

When a laser beam emits a fragment, it will not forget it. On the contrary, fragments are pushed into new orbits, usually through laser ablation. This means that the laser beam evaporates a small portion of the debris, generating a high-speed plasma plume that pushes the debris off its orbit.

The process of laser ablation and photon pressure can cause changes in the velocity of target debris, ultimately changing the size and shape of its orbit. This is where the motivation to use laser comes into play. The ability to change the trajectory of debris can be effectively controlled through laser networks to push or detach space debris, avoiding potential catastrophic events such as collisions, "Li explained.

A system using multiple lasers can create multiple opportunities to interface with debris and lead to more effective trajectory control. Multiple lasers can simultaneously act on a single target, with a higher intensity spectrum, changing its trajectory in a way that a single laser cannot.

Lee will collaborate with Scott Zemerick, Chief Systems Engineer at TMC Technologies in Fairmont, to validate all models and algorithms developed throughout the project in the "Digital Twin Environment". This will ensure that the product is ready for flight software, Lee said.

Source: Laser Network

İlgili öneriler
  • Ultraviolet spectroscopy: a leap in accuracy and precision under extremely low light levels

    Ultraviolet spectroscopy plays a crucial role in the study of electronic transitions in atoms and rovibronic transitions in molecules. These studies are crucial for the testing of fundamental physics, quantum electrodynamics theory, determination of fundamental constants, precision measurements, optical clocks, high-resolution spectroscopy supporting atmospheric chemistry and astrophysics, and str...

    2024-03-08
    Çeviriyi gör
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    Çeviriyi gör
  • A German 3D printing company applies for bankruptcy

    On February 5th, it was reported that Q BIG 3D GmbH filed for bankruptcy on January 31, 2025. The Ludwigsburg District Court has ordered temporary bankruptcy administration and appointed Mr. Ilkin Bananyarli of PLUTA Rechtsanwarts GmbH as the temporary bankruptcy administrator.The company was founded in 2019 and focuses on large format particle 3D printing systems, providing additive manufacturing...

    02-06
    Çeviriyi gör
  • Breaking the limits of optical imaging by processing trillions of frames per second

    Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.The team located at the INRS É nergie Mat é riaux T é l é communications resea...

    2024-04-08
    Çeviriyi gör
  • Microscopic Marvel photon devices have the potential to completely change the way physics and lasers are processed

    Researchers at Rensselaer Institute of Technology have developed a device that operates at room temperature, which is the first topological quantum simulator to operate under strong light matter interaction mechanisms, making high-tech research easier in cutting-edge ways.Researchers at Rensselaer Institute of Technology have developed a device no larger than human hair, which will enable physicis...

    2024-06-04
    Çeviriyi gör