Türkçe

Improving chip level laser performance by suppressing noise

37
2025-12-01 11:11:12
Çeviriyi gör

For a long time, noise has been the main bottleneck restricting the performance improvement of microchip level Brillouin lasers. Now, researchers in Sydney have successfully overcome this challenge, making significant breakthroughs in the field of integrated photonics and developing an effective noise suppression method. This achievement makes it possible to generate extremely pure and ultra narrowband light sources on compact chips, which will strongly support the development of cutting-edge technologies such as quantum technology, advanced navigation systems, ultra high speed communication networks, and high-precision measurement tools in the future.

 



The team at the University of Sydney has introduced a way to tame the parasitic processes that emerge inside these lasers as power increases, achieving performance once considered out of reach for chip-scale devices, boldly enabling new photonic possibilities worldwide.

Brillouin lasers are renowned for producing extraordinarily coherent light, making them ideal for applications that require extreme stability and spectral purity. Unlike everyday light sources that emit broad and noisy spectra, Brillouin lasers generate a near-perfect single wavelength capable of supporting optical atomic clocks, quantum sensors and cutting-edge metrology.

However, their potential has been constrained by a phenomenon known as Brillouin cascading. When the laser output is pushed to higher levels, unwanted parasitic modes of light emerge, introducing noise and siphoning energy from the primary mode.

This breakdown in spectral purity poses a serious challenge for real-world technologies that demand consistent, low-noise performance, especially in rapidly evolving quantum and photonic global systems.

The Sydney team tackled this long-standing issue using photonic bandgap engineering, a technique that shapes how light behaves inside microstructures. They precisely inscribed nanoscale Bragg gratings, features more than one hundred times smaller than a human hair, directly into the optical cavity of the laser.

These gratings act as a kind of photonic filter, creating a “dead zone” where parasitic modes cannot form, while leaving the primary mode unimpeded. By modifying the density of optical states inside the cavity, the researchers removed the very conditions that allow cascading to begin.

Without the necessary states to occupy, parasitic modes simply cannot develop, enabling the laser to maintain coherence even at higher and more practical operating power levels safely.

The results demonstrate the effectiveness of this approach. When the Bragg grating was activated, the minimum threshold for Brillouin lasing increased six-fold, preventing cascading from initiating under normal operating conditions.

At the same time, the team measured a 2.5-times increase in the power of the fundamental mode, providing direct evidence that the method boosts usable output while maintaining spectral purity. This combination of higher power and lower noise has been a key goal for photonics researchers working to integrate precision light sources onto chips.

A further innovation lies in the reconfigurability of the Bragg gratings. They can be written, erased and re-tuned after fabrication using only laser light, eliminating the need to manufacture new chips for different operating modes. This programmability means chip-scale lasers can be dynamically configured for single-mode or multi-mode operation, depending on application requirements.

The ability to adjust optical properties post-fabrication represents a major step towards flexible, adaptive photonic systems suitable for a wide range of advanced technologies, supporting future ultra-secure quantum networks.

This breakthrough also offers a general framework for controlling optical interactions on integrated platforms, with implications extending beyond Brillouin lasers. It could lead to cleaner quantum light sources, more stable frequency combs and new device architectures that push photonic chips into regimes previously unattainable.

By giving researchers unprecedented control over the density of states within microresonators, this method opens the door to creating novel classes of light sources essential for quantum computing, precision timing and next-generation communication systems.

The work underscores Australia’s growing leadership in integrated photonics and presents a clear path toward ultra-stable, low-noise and high-power chip-scale lasers capable of supporting the next era of quantum and communication technologies.

Source: opengov

İlgili öneriler
  • Farnell provides its own branded 3D printing consumables

    Farnell stated that it will store a series of 3D printed filaments under its Multicomp Pro brand, targeting "design engineers, creators, and hobbyists."."With the growing interest and demand for 3D printing, we are pleased to provide our customers with a diverse range of 3D printer consumables aimed at meeting the quality standards required by engineers," added Steve Jagger Marsh, the company's pr...

    2024-06-03
    Çeviriyi gör
  • Huashu High tech launches a large format 12 laser metal 3D printer at TCT Asia

    Chinese industrial 3D printer manufacturer Huashu High tech has launched the FS811M metal powder bed fusion series platform. The FS811M series has a construction volume of 840 x 840 x 960 millimeters and can be equipped with powerful 6, 8, 10, or 12 x 500 watt fiber lasers."As the latest member of the Huashu High tech Metal 3D printer product portfolio, FS811M originates from our joint innovation ...

    2024-05-13
    Çeviriyi gör
  • The research team at the University of Electronic Science and Technology of China has developed three innovative photonic devices

    Recently, Professor Nie Mingming from the Key Laboratory of Fiber Optic Sensing and Communication at the School of Information and Communication Engineering, University of Electronic Science and Technology of China, in collaboration with the University of Colorado Boulder, published a research paper titled "Cross polarized stimulated Brillouin scattering empowered photonics" in the top internation...

    05-30
    Çeviriyi gör
  • Industrial laser giant Coherent receives $33 million investment

    Recently, according to media reports, industrial laser giant Coherent has signed a "preliminary terms memorandum" with the US Department of Commerce, which will receive up to $33 million in investment under the Chip and Science Act.It is reported that the funds will mainly be used to support the modernization and expansion project of the cutting-edge manufacturing cleanroom in Coherent's existing ...

    2024-12-12
    Çeviriyi gör
  • Stratasys Ltd. receives a $120 million investment from Fortissimo Capital

    It is reported that Stratasys Ltd. (NASDAQ: SSYS) announced on February 2nd that it has received a $120 million investment from Fortissimo Capital, an Israeli private equity firm. This transaction directly purchases 11.65 million newly issued shares at a price of $10.30 per share, representing a premium of 10.6% compared to the company's closing price on January 31, 2025. As of press time, it has ...

    02-05
    Çeviriyi gör