Türkçe

One-Step laser process achieves compatibility between semiconductor characteristics and CMOS process

55
2025-11-14 10:43:27
Çeviriyi gör

A new type of laser technology can regulate semiconductor conductivity characteristics in a fast and low-cost manner, which will revolutionize the manufacturing process of CMOS circuits and make them more simplified and efficient.

Laser-induced oxidation and doping integration (LODI), a technology developed by researchers at Daegu Gyeongbuk Institute of Science and Technology (DGIST), enables precise, p-type doping in titanium oxide (TiO2), an n-type semiconductor, by adjusting laser power to control dopant diffusion and oxidation at the same time. LODI achieves simultaneous oxidation and doping with just one laser irradiation.

TiO2 is valued for its non-toxicity, abundance, and superior chemical and thermal stability. Its wide, but relatively small, bandgap endows it with tunable properties that, combined with high transparency, make it suitable for applications in gas sensors, thin film transistors, memory devices, and transparent displays.

 

 

Concept of laser oxidation and surface analysis of titanium oxide (TiO2)


But, because TiO2 works as an n-type semiconductor, there are significant constraints on using it with CMOS circuits, which require both n-type and p-type conductivity to achieve balanced, efficient performance. CMOS circuitry is used to power many advanced electronic devices, including smartphones and computers.

To obtain stable p-type conductivity in TiO2, the researchers placed an aluminum oxide (Al2O3) film on top of a thin metal film of titanium (Ti) and irradiated it with a continuous wave laser for a few seconds. Aluminum (Al) ions diffused inside the lattice as the Ti combined with oxygen (O) to convert into TiO2. The balance of electrons broke down during this process, creating holes and then forming a p-type semiconductor in which holes, instead of electrons, carried current.

The researchers confirmed the formation of TiO2 and the incorporation of Al dopants using x-ray photoelectron spectroscopy and energy dispersive spectroscopy transmission electron microscopy. In addition, they fabricated laser-oxidized, Al-doped TiO2 thin film transistors to demonstrate that Al doping improved hole current and photostability.

The conventional approach to converting TiO2 semiconductors into p-type conductors is a complex, hours-long process that requires high-temperature thermal treatment and vacuum ion implantation. It also involves expensive equipment and a high vacuum environment, which limits its potential for commercialization.

The LODI process offers significant advantages over conventional methods. LODI allows for rapid fabrication under ambient conditions while minimizing thermal damage to the substrate and surrounding materials, preserving the integrity of underlying layers. It eliminates the need for separate photolithography and deposition processes, which are typically required for oxide channel formation. Oxidation is completed within seconds, significantly accelerating the process compared to traditional techniques.

By integrating lithography, oxide deposition, and doping into one process, LODI streamlines semiconductor fabrication, achieving the same effect as traditional methods in just a few seconds and with just one laser. Considered by the research team to be a next-generation semiconductor manufacturing technology, LODI performs oxidation, doping, and patterning simultaneously and significantly lessens process time and cost. It provides an easy, simple, efficient, and controllable method to convert TiO2 for CMOS technology and advanced electronic devices.

“This study holds significance as it converts titanium oxide semiconductors, which have been mainly used in the n-type, to the p-type while streamlining the conventional complex process into a single laser process,” professor Hyukjun Kwon said. “This original technology, that can precisely control the conductivity type of oxide semiconductors, will serve as a foundation for implementing next-gen, highly integrated, and reliable devices.”

Source: photonics

İlgili öneriler
  • American scientists use light technology to control hypersonic jet engines

    According to the website "interesting engineering" on July 29th, a new study funded by the National Aeronautics and Space Administration (NASA) has revealed for the first time that the airflow in supersonic combustion jet engines can be controlled through optical sensors. This study was conducted by researchers from the School of Engineering and Applied Sciences at the University of Virginia.When ...

    2024-07-31
    Çeviriyi gör
  • Progress in the research and development of high-performance electrically pumped topology lasers in semiconductor manufacturing

    Topological laser (TL) is an ideal light source for future new optoelectronic integrated chips, designed and manufactured using topological optics principles to obtain robust single-mode lasers. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection are still in the early stages of resear...

    2024-07-11
    Çeviriyi gör
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    Çeviriyi gör
  • Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

    Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project,...

    2023-09-27
    Çeviriyi gör
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    Çeviriyi gör