Türkçe

Laser-induced graphene sensor can diagnose diabetes through breath samples

88
2025-09-08 10:14:27
Çeviriyi gör

In the U.S., one in five of the 37 million adults who has diabetes is not aware of it (according to the U.S. CDC – Centers for Disease Control & Prevention). Current methods of diagnosing diabetes and prediabetes usually require a visit to a doctor’s office or lab work, both of which can be expensive and time-consuming. Now, diagnosing diabetes and prediabetes may be as simple as breathing.

 



Diagnosing diabetes in a few minutes from just a breath sample


A research team led by Huanyu “Larry” Cheng, James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State University, University Park, PA, has developed a sensor that can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample.

Their achievement is described in Chemical Engineering Journal.

Previous diagnostic methods often used glucose found in blood or sweat, but the new sensor detects acetone levels in the breath. While everyone’s breath contains acetone as a byproduct of burning fat, acetone levels above a threshold of about 1.8 parts per million indicate diabetes.

“While we have sensors that can detect glucose in sweat, these require that we induce sweat through exercise, chemicals or a sauna, which are not always practical or convenient,” said Cheng. “This sensor only requires that the subject exhales into a bag, then dip the sensor in and wait a few minutes for results.”

Cheng said there have been other breath analysis sensors, but they detected biomarkers that required lab analysis. Acetone can be detected and read on-site, making the new sensors cost-effective and convenient.

Laser-induced graphene

In addition to using acetone as the biomarker, Cheng said another novelty of the sensor came down to design and materials — primarily laser-induced graphene. To create this material, a CO2 laser is used to burn the carbon-containing materials, such as the polyimide film in this work, to create patterned, porous graphene with large defects desirable for sensing.

“This is similar to toasting bread to carbon black if toasted too long,” Cheng said. “By tuning the laser parameters such as power and speed, we can toast polyimide into few-layered, porous graphene form.”

The researchers used laser-induced graphene because it is highly porous, meaning it lets gas through. This quality leads to a greater chance of capturing the gas molecule, since breath exhalation contains a relatively high concentration of moisture. However, by itself, the laser-induced graphene was not selective enough of acetone over other gases and needed to be combined with zinc oxide.

“A junction formed between these two materials that allowed for greater selective detection of acetone as opposed to other molecules,” Cheng said.

Another challenge was that the sensor surface could also absorb water molecules, and because breath is humid, the water molecules could compete with the target acetone molecule. To address this, the researchers introduced a selective membrane that could block water but allow the acetone to permeate.

Cheng said that right now, the method requires a subject to breathe directly into a bag to avoid interference from factors such as airflow in the ambient environment. The next step is to improve the sensor so that it can be used directly under the nose or attached to the inside of a mask. He also plans to investigate how an acetone-detecting breath sensor could be used to optimize health initiatives for individuals.

“If we could better understand how acetone levels in the breath change with diet and exercise, in the same way we see fluctuations in glucose levels depending on when and what a person eats, it would be a very exciting opportunity to use this for health applications beyond diagnosing diabetes,” he said.

Source: optics.org

İlgili öneriler
  • Low noise! Switzerland develops a new type of laser

    According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.Small laser system (I...

    2024-07-03
    Çeviriyi gör
  • The Japanese research team has manufactured a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in fields such as laser processing

    Recently, a Japanese research team has developed a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in laser processing, biotechnology, and medical fields.As is well known, ultraviolet (UV) is an electromagnetic wave with a wavelength range of 100 to 380nm. These wavelengths can be divided into three regions: UV-A (315-380 nm), UV-B (280...

    2023-10-23
    Çeviriyi gör
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    Çeviriyi gör
  • Laser Photonics officially launches its SaberTech laser cutting system

    Recently, Laser Photonics (LPC) officially launched its SaberTech laser cutting system. This system not only enriches the product line of LPC's laser cleaning, welding, marking, and engraving systems, but also marks another important breakthrough for the company in the field of laser technology. This product release is another heavyweight measure after LPC's latest generation laser cleaning system...

    2024-06-19
    Çeviriyi gör
  • DataLase launches a new laser active transparent to white coating

    Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. Thi...

    2024-03-09
    Çeviriyi gör