Türkçe

Inertia Enterprises focuses on the commercialization of fusion energy

1277
2025-08-29 10:50:34
Çeviriyi gör

Inertia Enterprises, a private fusion power start-up, based in San Francisco, CA., has announced the formation of the company, co-founded by fusion energy pioneer Dr. Andrea “Annie” Kritcher, fusion power plant designer Prof. Mike Dunne, and successful tech entrepreneur, Jeff Lawson.

Underpinned by this team of experts spanning science, engineering, technology and business, Inertia stated that it is “commercializing the only approach to fusion that has successfully achieved ignition and energy gain – demonstrated at the U.S. Department of Energy’s (DOE) Lawrence Livermore National Laboratory (LLNL)”.

Inertia’s strategy is to take the most direct, scientifically proven path from what is working today at LLNL toward commercial energy. The company is developing a new generation of mass-produced, low-cost lasers and fuel targets that leverage the scientific result of fusion ignition.

 



Inertia co-founders: Annie Kritcher, Jeff Lawson, and Mike Dunne


The company has partnered with LLNL on a substantial and multifaceted relationship, including research agreements, to advance low-cost, mass-production target design and fabrication. The company has licensed nearly 200 patents covering multiple technologies critical to achieve fusion ignition, and has reached a first-of-its-kind arrangement to advance public-private collaboration and technology transfer, allowing Dr. Kritcher to be a co-founder of Inertia.

“The goal of delivering limitless fusion energy has attracted tens of billions of dollars in government investment and decades of research, culminating in the achievement of ignition just a couple of years ago,” said Jeff Lawson, Inertia founder and CEO. “Standing on the shoulders of giants, we see a clear path from big science to commercial energy by scaling up the industrial base to the scale needed for laser inertial fusion.”

In December 2022, Dr. Kritcher made history with the team at LLNL by conducting the first controlled fusion experiment to achieve fusion ignition, also known as scientific energy breakeven, meaning it produced more energy from fusion than the laser energy used to drive it. This unprecedented achievement laid the foundation for Inertia to bring fusion to commercial scale.

The founders

Inertia Enterprises is founded by three established innovators in their respective fusion-related fields:

Kritcher has been the lead designer of these LLNL experiments since 2019, responsible for the physics design that successfully achieved ignition.
Lawson was the founder and CEO of tech platform Twilio, which he grew from inception to over $4B in revenue, a public listing on the New York Stock Exchange, and a global footprint of over 300,000 customers.
Dunne is a professor of Photon Science at Stanford University and an Associate Lab Director of the SLAC National Accelerator Laboratory, where he leads a preeminent, multi-billion-dollar research facility using high power lasers that hit targets at kHz rates. Previously, Dunne led the five-year program at LLNL to deliver an industry-validated power plant design based on the LLNL ignition approach, assembling a team of over seventy vendors, utility companies, national labs and universities.
Inertia’s statement added that the startup “is positioned to transform the field by combining the proven science from LLNL with innovative technology, leveraging Dr. Kritcher’s specialized expertise in fuel-target design, Professor Dunne’s leadership in integrated fusion power plant development and multi-billion-dollar laser facility advancement, and Lawson’s two decades of start-up and business acumen—ensuring the partnerships and expertise needed to move this breakthrough toward commercialization.”

Kritcher commented, “There’s a lot of excitement around various potential pathways to fusion right now, but only one approach has delivered energy gain. This result is a monumental step for limitless clean energy.” Fusion energy offers a technological breakthrough unseen in American history since modern inventions like the internet, telephone, or light bulb. Fusion energy is the process where two light atoms combine, or “fuse” to form a larger atom, releasing a massive amount of energy.

“We’re at a crucial tipping point. 2022 proved that controlled fusion ignition is possible, but current lasers, like the one at LLNL, which is the size of three football fields, are not suitable for commercialization,” said Prof. Dunne. “But with modern laser technologies, we can combine the transformative results from Annie and the team with high-powered laser technology from the semiconductor industry to convert decades of research into a reality.”

Source: optics.org

İlgili öneriler
  • Researchers develop new techniques for controlling individual qubits using lasers

    Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each foc...

    2023-09-12
    Çeviriyi gör
  • In situ bubble point measurement using spectroscopy

    Develop and research a new downhole bubble point pressure measurement technology suitable for black oil and volatile oil to enhance well analysis using spectroscopy.Representative fluid characteristics are required for a wide range of oilfield lifespans, such as the initial scale and production planning of reservoir hydrocarbon reserves. Fluid characteristics are usually obtained from laboratory s...

    2024-01-31
    Çeviriyi gör
  • Mears Machine Corporation achieves breakthrough in large-scale powder bed laser manufacturing

    Mears Machine Corporation has achieved a global breakthrough by manufacturing the world's largest single unit unwelded powder bed laser components. More details about this revolutionary manufacturing solution will be revealed in the coming months. "This milestone unlocks a new era in large-format metal additive manufacturing," said James Lloyd, CEO of Mears Machine Corporation. "We can now deliv...

    11-08
    Çeviriyi gör
  • Scientists uncover the HPC potential of advances in communications and global laser light sources

    Thanks to the advent of high performance computing (HPC) for global laser light sources, the optical communications world is on the verge of major change. This revolutionary technology will redefine the way we transmit and receive data, bringing unprecedented speed and efficiency.Optical communication, which uses light to transmit information, has been a cornerstone of our digital world for deca...

    2023-08-04
    Çeviriyi gör
  • An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

    The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.The specific technique...

    2024-11-13
    Çeviriyi gör