Türkçe

NKT Photonics utilizes fiber lasers to achieve deep space communication links

538
2025-07-21 10:31:02
Çeviriyi gör

On July 7, the European Space Agency (ESA), established Europe’s first deep-space optical communication link with NASA’s Psyche mission using a high-power fiber laser system supplied by NKT Photonics, a subsidiary of Hamamatsu.
NKT’s announcement stated, “This achievement, conducted with NASA/JPL’s Deep Space Optical Communications (DSOC) demonstrator, marks a significant leap forward in high-data-rate communication across vast interplanetary distances.”


ESA’s multi-beam high-power fiber laser transmission system


The link is the result of collaboration between ESA, NASA/JPL, and a consortium of including NKT Photonics. The major technical challenges that were overcome have created a laser with enough power to be detected at extremely large distances, a pointing system with enough precision to aim accurately at the spacecraft an equally precise receiver system sensitive enough to detect the extremely faint return signals.

In collaboration with Swiss General Atomics Synopta, NKT Photonics supplied the multi-beam high-power fiber laser system, and the beam transmit system. The laser system emits a narrow-linewidth, modulated signal so that the distant spacecraft can precisely locate the ground station and lock onto it, establishing an optical link for high-speed data downlink.


ESA’s Ultima project


Located at the Kryoneri Observatory in Greece, the transmitter generates a multi-kilowatt beam capable of detection by the DSOC flight transceiver onboard the Psyche spacecraft, currently 265 million km distant, en route to the metal-rich 16 Psyche asteroid.

Laser system
The core of the laser system is based on NKT Photonics’ Koheras single-frequency fiber laser platform. The base for the configuration is an Acoustik line card sub-rack housing the Basik Y10 seed laser, a Boostik pre-amplifier as well as both AOM and EOM line cards used for spectral pre-conditioning and high frequency amplitude modulation. A splitter sends the signal to the five Boostik UHP high power amplifiers to bring the power up to the kW level needed to reach the spacecraft.

The bespoke amplifiers are based on NKT Photonics’ core fiber amplifier technology, also used in their directed energy activities but modified to enable high speed power modulation from 0 to 2 kW in less than 10 µs. Finally, a bespoke timing module line card provides all the timing and synchronization waveforms for the various beacon and data-uplink scenarios including the modem interface.

The beam transmit system’s precision allows it to point with arcsecond precision to the spacecraft, enabling both a beacon for accurate downlink and the potential to uplink data, providing a glimpse into the future of deep space communication.

Mike Yarrow, Senior Engineering Manager at NKT Photonics, said, “Our expertise in fiber laser technology has allowed us to contribute to a system that pushes the boundaries of what’s possible in free space optical communications. This project not only showcases our ability to deliver unprecedented power and precision to meet our customers’ stringent requirements but also reinforces our commitment to forging successful collaborations and advancing knowledge to benefit society as a whole.”

Source: optics.org

İlgili öneriler
  • Germany's Tongkuai Laser Austria's Parsing Intelligent Factory Completed Expansion

    This month, German laser giant Trumpf completed an expansion project at its smart factory in Pasing, Austria. The opening ceremony was held in the presence of members of the Tongkuai Group family and representatives from the business and political circles. Over the past two years, Tongkuai has invested approximately 40 million euros in the expansion of the factory. The company has built two new...

    2024-09-14
    Çeviriyi gör
  • Inertia Enterprises focuses on the commercialization of fusion energy

    Inertia Enterprises, a private fusion power start-up, based in San Francisco, CA., has announced the formation of the company, co-founded by fusion energy pioneer Dr. Andrea “Annie” Kritcher, fusion power plant designer Prof. Mike Dunne, and successful tech entrepreneur, Jeff Lawson.Underpinned by this team of experts spanning science, engineering, technology and business, Inertia stated that it i...

    08-29
    Çeviriyi gör
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    Çeviriyi gör
  • Tsinghua University develops efficient and stable perovskite quantum dot deep red light devices

    Semiconductor quantum dots have the advantages of high quantum yield, narrow emission spectrum, and compatibility with solution processes. They have shown broad application prospects and enormous economic value in the field of optoelectronic materials and devices, and related research has won the Nobel Prize in Chemistry in 2023.Compared with traditional II-VI and III-V quantum dots (such as CdSe,...

    03-18
    Çeviriyi gör
  • Progress in the research and development of high-performance electrically pumped topology lasers in semiconductor manufacturing

    Topological laser (TL) is an ideal light source for future new optoelectronic integrated chips, designed and manufactured using topological optics principles to obtain robust single-mode lasers. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection are still in the early stages of resear...

    2024-07-11
    Çeviriyi gör