Türkçe

Shanghai Institute of Optics and Fine Mechanics has made progress in synchronously pumped ultrafast Raman fiber lasers

568
2025-06-07 10:47:47
Çeviriyi gör

Recently, the research team led by Zhou Jiaqi from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of synchronously pumped ultrafast Raman fiber lasers. The related achievements were published in Optics Express under the title "Revealing influence of timing jitter on ultra fast Raman fiber laser synchronously pumped by gain switched diode".

Synchronous pumping technology utilizes ultrafast pulses with high peak power as pumps. Compared to traditional mode-locked Raman fiber lasers with continuous optical pumping, it can effectively overcome the problem of weak Raman gain and obtain high-performance Raman solitons under short cavity conditions. For synchronously pumped Raman fiber lasers, using a gain switching diode (GSD) with adjustable repetition rate as the pump can effectively simplify the synchronization difficulty compared to a mode-locked pump source with fixed repetition rate.

The research team built a GSD synchronously pumped Raman fiber laser (Figure 1), and the experimental results revealed that the inherent strong time jitter characteristics of GSD pump pulses are the fundamental reason for reducing the time-domain stability and frequency-domain coherence of output Raman pulses. A detailed study was conducted on the time-frequency characteristics of output Raman pulses under different pump pulse widths, confirming that stretching the pulse width can effectively reduce the influence of pump time jitter and suppress the relative intensity noise of output Raman pulses (Figure 2). In addition, comparative experiments were conducted using a mode-locked laser instead of GSD pump, and the results further confirmed the key influence of pump pulse time jitter on the frequency domain coherence of output Raman pulses. This study not only deepens the understanding of GSD synchronously pumped Raman fiber lasers, but also paves the way for the generation of high-performance ultrafast Raman pulses.


Figure 1. Schematic diagram of experimental setup for GSD synchronously pumped Raman fiber laser


Figure 2. Relative intensity noise of output Raman pulses under different pumping conditions


Relevant work has been supported by the National Key R&D Program, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the National Natural Science Foundation of China and other projects.

Source: Opticsky

İlgili öneriler
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Çeviriyi gör
  • Dark Solitons Discovered in Ring Semiconductor Lasers

    Dark solitons - the extinction region in a bright background - spontaneously form in a ring semiconductor laser. Observations conducted by an international research group may lead to improvements in molecular spectroscopy and integrated optoelectronics.Frequency comb - a pulse laser that outputs light at equidistant frequencies - is one of the most important achievements in the history of laser ph...

    2024-02-01
    Çeviriyi gör
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    Çeviriyi gör
  • Shanghai Optical Machinery Institute has made progress in laser assisted connection of metal carbon fiber composite heterojunction materials

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in the laser assisted connection of metal carbon fiber composite heterostructure joints.The team used an adjustable flat top rectangular semiconductor laser as a heat source to achieve...

    2023-09-01
    Çeviriyi gör
  • UK venture capital group acquires MicroLED developer Plessey

    Haylo Labs, a UK company recently established by former WaveOptics CEO David Hayes, has acquired microLED developer Plessey Semiconductors.Haylo says it also plans to invest more than £100 million scaling Plessey’s production capacity over the next five years at the firm’s GaN-on-silicon site in Plymouth and beyond, in anticipation of fast-growing demand for augmented and virtual reality (AR/VR) a...

    09-01
    Çeviriyi gör