Türkçe

BWT 969nm semiconductor pump source

341
2025-05-09 11:31:01
Çeviriyi gör

Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.

The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optical performance, and can be widely used in scientific research and other fields.

In terms of design, BWT combines six 500 watt modules to achieve a 3000W power output scheme (as shown in the figure below). By adopting CTC chip integration technology, the system has the characteristics of miniaturization and lightweight, with a total size of only 80 * 482 * 521mm ³, a weight of only 24kg, and equipped with QBH output.


Figure 1. Fiber Bundle Output 3000W@969nm Lockwave


The system can achieve an output power of 300-3000W within the current range of 5-30A, with a center wavelength of 969nm and a side mode suppression ratio of over 25dB; When the power reaches 3000W, the edge mode suppression ratio is about 40dB, and the full width at half maximum of the spectrum is less than 0.3nm. To achieve a near flat top distribution of fiber output energy, BWT uses special techniques to improve energy uniformity, and the measured data shows a super Gaussian order greater than 4 (as shown in the figure below).


Figure 2. Power of 3000W semiconductor laser system

 


Figure 3. 3000W 969nm semiconductor laser system


At present, BWT has a full range of semiconductor laser products (380nm-1940nm, 2mW-6kW), with laser pump sources covering the full power range of 10W to 1000W in the 8XXnm and 9XXnm series. In the future, we will launch higher power semiconductor laser systems to meet the demand of disc lasers for amplifying and outputting higher pulse energy in ultrafast lasers.

Source: BWT

İlgili öneriler
  • Ultrafast laser technology continues to reach new heights

    Ultra short pulse lasers, such as femtosecond lasers, are increasingly becoming easy-to-use plug and play devices suitable for a wide range of industrial and biomedical applications. Fifteen years ago, the volume of these lasers was still very large, requiring daily cleaning of optical components, regular maintenance of cooling water, and continuous optimization of laser parameters. Nowada...

    2023-11-06
    Çeviriyi gör
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    Çeviriyi gör
  • Scientists have demonstrated a new way to make infrared light from quantum dots, and the experiments are still in the early stages

    Scientists at the University of Chicago have demonstrated a way to create infrared light using colloidal quantum dots. The researchers say this approach shows great promise; Although the experiment is still in its early stages, these quantum dots are already as efficient as existing conventional methods.These points could one day form the basis of infrared lasers, as well as small and inexpensive ...

    2023-09-08
    Çeviriyi gör
  • IPG introduces a new dual-beam laser with the highest single-mode core power

    From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding spe...

    2023-09-14
    Çeviriyi gör
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    Çeviriyi gör