Türkçe

The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

1070
2025-04-15 14:32:31
Çeviriyi gör

In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, conventional optical metasurface preparation materials are mostly limited to isotropic materials, and the birefringence characteristics of anisotropic lithium niobate crystals have not been systematically explored in the field of optical metasurfaces.

Li Junjie's team from the Institute of Physics of the Chinese Academy of Sciences/Micromachining Laboratory of the National Research Center for Condensed Matter Physics in Beijing has long focused on the research of micro/nano photonics device processing, design and function integration; In recent years, the team has conducted systematic research on lithium niobate nanooptics and made a series of important progress. Firstly, the team developed a multi-component gas co etching technology, achieving controllable processing of lithium niobate nanostructures (Figure a, Advanced Materials Technology 2024), 9, 2400318). Based on this etching technology, the team designed and processed a nonlinear hyper lens based on lithium niobate nanopore structure, achieving the function of up converting near-infrared beam frequency to ultraviolet band while focusing (Figure b, ACS Photonics 2025, doi. org/10.1021/acphotonics. 4c02259). Recently, the team discovered a new phenomenon caused by lithium niobate birefringence, which is the chiral optical response generated by non chiral structures.

The team established a dual-mode resonant coupled wave model that includes material birefringence response, and thus constructed lithium niobate nanostructures that exhibit non chiral characteristics in spatial structure (Figure c). Theoretical analysis shows that when the optical axis of lithium niobate crystal rotates to a specific angle, birefringence causes the mirror symmetry of the structure to break, and two nearly degenerate resonant states produce strong coupling effects. The hybrid resonance mode exhibits enormous chirality, producing a circular dichroism signal close to 1. In the experiment, the team used self-developed multi-component gas co etching technology to successfully process the designed lithium niobate nanostructure (Figure d), which has excellent surface smoothness and sidewall steepness. The spectral test structure confirmed the core result of the theoretical prediction, and the measured circular dichroism signal reached 0.53. The crystal structure of lithium niobate and the designed nanostructure are both non chiral, and the combination of the two can produce chiral optical response. This new phenomenon will inspire the design of new lithium niobate optical devices and has important scientific significance in the field of micro nano optics.

 



Figure a. Processing technology of lithium niobate nanostructures; b. Nonlinear superlenses; c. D. Theoretical design and experimental results of lithium niobate chiral metasurface

The research results were published in the recent Physical Review Letters 2025, 134, 113, 802 under the title "Chiral Resonant Modes Induced by Intrinsic Birefringence in Lithium Niobate Metasurfaces", and were included in this issue's Feature in Physics; The highlight column of the American Physical Society's Physics magazine wrote a special report titled "Birefringent Nanocubes Give Light a Circular Boost". The first author of this paper is Associate Researcher Wang Bo from the Microfabrication Laboratory, and the corresponding authors are Researcher Li Junjie and Associate Researcher Pan Ruhao. Zhu Tingyue, Master's student Liu Yunan, and Researcher Yang Haifang participated in the work. This work was supported by the National Natural Science Foundation of China, the National Key R&D Program of the Ministry of Science and Technology, the Chinese Academy of Sciences and the Huairou Comprehensive Extreme Conditions Experimental Device.

Source: opticsky

İlgili öneriler
  • NICT Japan corrects sudden data errors caused by atmospheric turbulence in laser links

    The National Institute of Information and Communication Technology of Japan, Nagoya Institute of Technology, and Japan Aerospace Exploration Agency have achieved the so-called "world's first successful demonstration of next-generation error correction codes, reducing the impact of atmospheric turbulence on ground to satellite laser communication".Atmospheric turbulence in ground-to-satellite laser...

    10-25
    Çeviriyi gör
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    Çeviriyi gör
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    Çeviriyi gör
  • Photon Industry Acquisition Information

    Theon International and Exosens SA have reached an agreement to acquire 9.8% of the shares for 268.7 million euros (approximately 312 million US dollars, equivalent to 54.0 euros per share).Theon International is a Greek based developer and manufacturer of customizable night vision, thermal imaging systems, and electro-optical ISR (observation) systems for military and security applications.Theon ...

    10-21
    Çeviriyi gör
  • Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

    In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low curre...

    2023-12-29
    Çeviriyi gör