Türkçe

Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

1191
2025-03-20 11:16:50
Çeviriyi gör

Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".

Digital holography is a technique that uses interference to record information about the optical field. Among them, off-axis digital holography is widely used in imaging, measurement, display, storage and other fields due to its ability to eliminate the influence of twin images in principle. Traditional off-axis digital holography uses an array detector to record holograms, and then selects the frequency spectrum related to the target light field. This imaging method records both the target image and redundant zero order images and twin images. In addition, due to the difficulty in preparing wide spectrum, high sensitivity, and high spatiotemporal resolution area array detectors, off-axis digital holography technology is also difficult to apply under extreme conditions such as special bands and low light.

This study is based on the mechanism of off-axis holography to separate redundant information in the spectral domain, combined with the characteristic of Fourier single pixel imaging technology that can obtain object spectra on demand. The hologram is encoded using a specific frequency stripe pattern, and the Fourier spectrum of the target light field is directly sampled by a high-sensitivity single pixel detector. Finally, the target light field information is obtained through inverse Fourier transform (Figure 1a, b). In addition, the research team intelligently designed encoding patterns and image enhancement models based on self coding architecture (Figure 1c), and used transfer learning techniques to reduce the required experimental data volume (Figure 1d). In the end, the research team successfully achieved imaging of phase type objects at a maximum sampling rate of 7.5% (Figure 2). This study combines holography, correlation imaging, and artificial intelligence organically, providing new ideas for efficient phase detection in special bands and low light conditions. It is expected to be applied in fields such as scattering imaging and low light imaging.

Figure 1. (a) Off axis hologram generation process; (b) The process of modulating off-axis holograms using learned mask selection patterns and reconstructing objects; (c) The joint optimization network structure used for pre training; (d) Fine tuning process using experimental data.

Figure 2. (a) Experimental setup diagram; (b) The original experimental results at different sampling rates and the experimental results processed by neural networks; (c) Phase truth, phase comparison of network input and network output objects at a sampling rate of 7.5%.

Source: opticsky

İlgili öneriler
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    Çeviriyi gör
  • New type of "dynamic static dual sensing" charge coupled phototransistor

    With the development of cutting-edge technologies such as automatic guidance and embodied intelligence, machine vision has put forward higher requirements for image acquisition, requiring precise recording of static images and the ability to sensitively capture dynamic changes in the scene. The existing dynamic and active pixel sensor technology integrates two functions: dynamic event detection an...

    04-17
    Çeviriyi gör
  • E-22 uncertainty optical frequency divider

    The time/frequency unit is the most accurate among the seven basic units, so many measurement studies that pursue ultra-high accuracy and sensitivity will be transformed into frequency measurements to achieve higher measurement accuracy and sensitivity. For example, by measuring the relative changes in the ratio of different atomic transition frequencies, ultralight dark matter can be detected or ...

    2024-02-27
    Çeviriyi gör
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    Çeviriyi gör
  • Thales will provide laser payloads for Hellas Sat 5

    Hellas Sat, which holds a majority stake in Arabsat, has reached a memorandum of understanding with Thales Alenia Space to collaborate on the development of a luminous communication payload for an upcoming new mission that will be launched on the future Hellas Sat 5 telecommunications satellite, which will operate at 39 degrees east longitude.The partnership between Hellas Sat and Thales Alenia Sp...

    2024-01-30
    Çeviriyi gör