Русский

Changchun Institute of Optics and Fine Mechanics has developed a high brightness HiBBEE non-uniform waveguide semiconductor laser

401
2025-03-18 14:14:23
Посмотреть перевод

High brightness semiconductor lasers have extremely important applications in fields such as laser radar. Traditional semiconductor lasers face challenges such as large vertical divergence angle, elliptical beam output, multiple lateral modes, and poor beam quality, which limit the direct application of high brightness semiconductor lasers.

In response to this challenge, the team from the Bimberg Sino German Green Photonics Research Center at Changchun Institute of Optics and Fine Mechanics has adopted a high brightness vertical wide area edge emission (HiBBEE) structure in the vertical direction, using the photonic bandgap effect to replace the traditional total reflection principle for light field limitation, improving the size of the optical mode, and reducing the vertical divergence angle of semiconductor lasers; At the same time, in the lateral direction, non-uniform waveguides were used to suppress lateral higher-order modes, improve the lateral beam quality of semiconductor lasers, and optimize the design and preparation of HiBBEE non-uniform waveguide semiconductor lasers. At a current of 1.5A, the full width at half maximum of the vertical and lateral divergence angles is still as low as 8.6 ° and 5.1 °, while maintaining the fundamental mode output. The brightness is improved by 1.5 times compared to similar devices.

 


Schematic diagram of HiBBEE non-uniform waveguide semiconductor laser structure

 


HiBBEE non-uniform waveguide semiconductor laser brightness


This high brightness HiBBEE non-uniform waveguide semiconductor laser can significantly reduce the application cost of semiconductor lasers and has broad application prospects.

The first author of the article is Wu Chengkun, a doctoral student at the Sino German Center, and the corresponding author is researcher Tian Sicong. The research was supported by the Sino German International Cooperation Project of the National Natural Science Foundation of China (Research on 1250nm High Brightness Quantum Dot Laser for Lidar, No. 62061136010).

Source: opticsky

Связанные рекомендации
  • EV Group launches EVG 850 NanoClean system for ultra-thin chip stacking for advanced packaging

    EV Group, a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets, yesterday launched the EVG850 NanoClean layer release system, which is the first product platform to adopt EVG's revolutionary NanoClean technology.The EVG850 NanoClean system combines infrared lasers with specially formulated inorganic release materials, and can ...

    2023-12-08
    Посмотреть перевод
  • Optical properties of Xinggory Cy3.5 amine/NH2 labeling experiment

    The optical properties of the Cy3.5 amine labeling experiment are an important reason for its application in biomarkers and fluorescence imaging. Cy3.5 is a fluorescent dye belonging to the Cyanine dye family, with high molar extinction coefficient and quantum yield, making it excellent in trace analysis and fluorescence imaging.In the Cy3.5 amine labeling experiment, the dye covalently binds to s...

    2024-03-29
    Посмотреть перевод
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    Посмотреть перевод
  • Frankfurt Laser Company launches a new high-power fiber coupled laser diode

    The global leader in laser technology solutions, Frankfurt Laser, has launched a new series of high-power fiber coupled laser diodes, setting a new standard in the laser industry. The innovative 9XXnm high-power fiber coupled laser diode aims to optimize fiber laser pump source applications, providing unparalleled efficiency, compactness, and brightness.The New Era of Laser TechnologyThe latest pr...

    2024-05-13
    Посмотреть перевод
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Посмотреть перевод