Русский

Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

1010
2025-02-18 14:58:56
Посмотреть перевод

On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang Daily reporters.


Huang Wei, Director of HGTECH Laser Semiconductor Product Line, inspects silicon wafers in the laboratory


At present, he is leading the research and development of laser-induced micro hole equipment. Once applied on advanced packaging substrate production lines, it will achieve chip manufacturing for 5G communication, MEMS (Micro Electro Mechanical Systems), RF components, biological imaging, and biosensing. In the future, the Chinese will be able to use glass substrates instead of some traditional silicon substrates in advanced packaging applications, which can be described as a new way. Huang Wei said, "We often use the line from 'Ne Zha' to encourage each other: If there is no way forward, we will take a path.

The just held city wide science and technology innovation conference proposed to deepen the deep integration of industry, academia, research and application led by enterprises, focus on major industrial needs, and carry out technological research and development. My team and I feel that we are working more vigorously! "Huang Wei said." From 0 to 1, innovation is the key, and from 1 million to 1 million, innovation is also the key. The industrial innovation joint laboratory he works for is to solve the equipment urgently needed by the industry. We don't make 'prototypes' lying in the exhibition hall for people to visit, but instead focus on tackling large-scale production of' one million 'and ultimately achieving stable, reliable, and efficient' chip manufacturing on glass substrates'.

For this purpose, Huang Wei and team members with an average age of 30 move to the laboratory, supplier, and customer sites every week to verify various unit technologies and develop complete equipment. All parties involved are laboratory members.

Collaborating to accomplish big things significantly reduces communication costs, "Huang Wei explained. Each unit technology in this equipment needs to be customized and developed according to customer needs to ensure the production of chip products that are truly needed by segmented industries in the future. I communicate every day, solve engineering problems every day, and the pace is very fast. I can't help but jog while walking. As soon as I start brainstorming and come back to my senses, the scheduled meeting time has exceeded half, and new ideas are still coming up crazily.

It is reported that the Industry Innovation Joint Laboratory is led by HGTECH Technology, and has been established by HGTECH Laser, Huazhong University of Science and Technology, Hubei Jiufengshan Laboratory, Hubei Optics Valley Laboratory, Wuhan Huari Precision Laser Co., Ltd., Wuhan Yunling Optoelectronics Co., Ltd., Changfei Advanced Semiconductors (Wuhan) Co., Ltd., Wuhan HGTECH Technology Investment Management Co., Ltd., and other units. Semiconductor laser equipment such as hidden cutting, annealing, and testing equipment have been included in the research and development projects.

Source: laserfair

Связанные рекомендации
  • Duke University: Laser imaging holds promise for early detection of risky artworks

    Compared to Impressionist paintings taken 50 years ago, upon closer inspection of Impressionist paintings in museums, you may notice some strange things: some are losing their bright yellow hue.Taking the dramatic sunset in Edward Munch's masterpiece "The Scream" as an example. The once bright orange yellow parts of the sky have faded to off white.Similarly, in his painting "The Joy of Life", Henr...

    2024-05-14
    Посмотреть перевод
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    Посмотреть перевод
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    Посмотреть перевод
  • Xinjiang Institute of Physical and Chemical Technology has established the largest database of computational nonlinear optical crystal materials to date

    Modern laser technology urgently requires nonlinear optical materials that can generate coherent light through second harmonic generation. However, only a small portion of the nonlinear optical properties of non centrosymmetric crystal materials have been experimentally or theoretically studied, and exploration for high-performance nonlinear optical crystal materials is still very limited.Recentl...

    2023-10-24
    Посмотреть перевод
  • Fraunhofer ILT utilizes short pulse lasers to achieve high-speed optical stamping

    At the Fraunhofer Institute for Laser Technology (ILT), researchers in collaboration with RWTH Aachen University – Chair for Technology of Optical Systems (RWTH-TOS) are using a spatial light modulator (SLM) to shape the beam of an ultrashort pulse laser precisely into the desired pattern to apply to the surface of a workpiece.The developers say that this approach “significantly speeds up processi...

    09-25
    Посмотреть перевод