Русский

Laser beam combined with metal foam to produce the brightest X-ray

1003
2025-01-18 11:00:26
Посмотреть перевод

According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dense matter (including plasma generated during inertial confinement fusion). The relevant research paper was published in the latest issue of Physical Review E.

The laser generated by NIF overlaps the millimeter level cylindrical silver foam target to create high-energy X-ray. Image source: Lawrence Livermore National Laboratory

The team explained the process of creating this type of X-ray: a high-power laser beam collides with silver atoms, exciting plasma and generating X-rays. The higher the atomic number of a metal atom, the higher the X-ray energy it produces.

To produce X-rays with energies higher than 20000 electron volts, the team chose metallic silver in the experiment. Since the foam structure of metal is crucial for creating high-energy X-ray, they used molds and silver nanowires to create a cylindrical target with a diameter of 4mm and a height of 4mm.

The team first freezes the nanowires suspended in the mold solution, then uses supercritical drying technology to remove the solution, and finally leaves low-density porous silver metal foam. The density of this silver foam structure is only one thousandth of that of solid silver.
This foam structure has many advantages: the laser emitted by NIF can heat a larger volume of foam material, and the heat transmission speed is far faster than that in solids. The entire silver foam cylinder was heated by a laser beam in about 1.5 billionths of a second, thus producing the brightest X-ray so far.

In addition to creating the X-ray source, the team also made in-depth exploration on a variety of different foam materials to determine which foam can provide the maximum energy output. Meanwhile, they also employed a novel data analysis technique to understand the physical properties of the generated plasma.

Source: Yangtze River Delta Laser Alliance

Связанные рекомендации
  • Trumpf announces four personnel changes

    Recently, global laser giant Germany's Trumpf announced four personnel changes, namely Claudio Santopietro as the head of intelligent factory consulting and automation, Kevin Cuseo as the head of software sales, Julian Schorpp as the product manager for automatic bending products, and Adam Simons as the head of additive manufacturing for Trumpf North America.According to relevant information, Clau...

    2024-11-26
    Посмотреть перевод
  • German team develops and promotes laser technology for formable hybrid components

    Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, su...

    2023-08-16
    Посмотреть перевод
  • SuperLight Photonics receives strategic investment from Hamamatsu Ventures

    Recently, SuperLight Photonics, a leading laser technology manufacturer, announced that it has received strategic investment from global venture capital firm Hamamatsu Ventures, which will be used to promote long-term innovation and collaborative development of its laser technology. Hamamatsu Ventures focuses on investing in photonics companies that address future demand expectations, particular...

    2024-10-22
    Посмотреть перевод
  • Massachusetts University team achieves new breakthrough in photolithography chip

    Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, bu...

    2024-11-06
    Посмотреть перевод
  • The creator of a computer that uses lasers to perform complex tasks at the speed of light has announced a breakthrough in high-performance computing

    LightSolver's new LPU100 system is powered by 100 lasers and can solve the most challenging problems through up to 120100 combinations.This computer was created by Dr. Ruti Ben Shlomi, CEO of LightSolver and Dr. Chen Tradonsky, CTO, a physicist at the Rehowatt Weizmann Institute for Science.It is not suitable for household use because its high computing power exceeds individual needs, but it is su...

    2024-03-21
    Посмотреть перевод