Русский

Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

825
2023-09-07 14:05:17
Посмотреть перевод

Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation in monolayer MoS2".

High order harmonic radiation in solid materials is an important spectroscopy technique to detect the fundamental properties of matter, and has been successfully used to reconstruct crystal band structure, detect Berry curvature and detect topological phase transitions. In recent years, two-dimensional layered materials have received extensive attention, which brings new opportunities for further research on the generation of higher harmonics.

Since the thickness of the material is only a single or a few atomic layers, its spatial scale is much smaller than the wavelength of the driving laser, which can effectively avoid the influence of nonlinear transmission, and thus become an ideal material for studying the ultrafast-fast dynamics of laser field. Among them, monolayer molybdenum disulfide (MoS2) has attracted much attention due to its non-centrosymmetric structure and significant nonlinearity.

This research team [Opt.Express 29,4830 (2021)] observed an abnormal enhancement of even harmonics in the HHG spectrum of MoS2 and attributed this to spectral interference during different half-weeks of Berry contact control. In addition, quantum trajectory analysis suggests that the transition dipole moment phase and Berry linkage modulate the energy and momentum of the released photon, but no experimental observations have confirmed this so far.

The research team used the mid-infrared laser light source built by the laboratory to excite single-layer MoS2 to generate higher-order harmonic spectrum. It was found that when the laser polarization was driven along the armrest direction, the center frequency of even harmonics would shift significantly, and the harmonic energy of the frequency shift was close to the band gap energy of single-layer MoS2.

In addition, it is found that the frequency shift of even harmonics of adjacent order is opposite, that is, the 6th harmonic is red shifted, while the 8th harmonic is blue shifted. Based on the semiconductor Bloch equation and the saddle point calculation of electron orbit, the research team successfully revealed the microphysical mechanism of frequency shift, and confirmed that the frequency shift phenomenon of even harmonic is mainly from the interband polarization process.

The theoretical analysis further shows that the transition dipole moment phase and the Bailie connection jointly modulate the moment and momentum of the electron-hole pair recombination, resulting in a change in the frequency of the photon released by the adjacent half-period, which then changes the center frequency of different harmonic levels, and finally causes six redshifts and eight blue shifts of MoS2 spectrum. This work reveals that the transition dipole moment phase and Berry connection play an important role in the high-field optical response of non-centrosymmetric materials, and contributes to the fundamental understanding of ultrafine carrier dynamics in non-centrosymmetric materials.

Figure 1. The simulated higher-order harmonic spectra reproduce the experimental observations.

Figure 2. (a) the frequency shift of different levels of the spectrum between bands, and (b) the dependence of the harmonic frequency shift on the crystal azimuth.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Связанные рекомендации
  • Research progress on machine learning for defect detection and prediction in laser cladding process

    It is reported that researchers from Foshan University, the Institute of Chemical Defense of the Academy of Military Sciences, the National Defense Technology Key Laboratory of Equipment Remanufacturing Technology of the Armored Forces Academy, and Chengdu State owned Jinjiang Machinery Factory have summarized and reported the latest progress of machine learning in defect detection and prediction ...

    01-17
    Посмотреть перевод
  • Researchers treated MXene electrodes with lasers to improve lithium-ion battery performance

    Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have found that laser scribing or creating nanodots on battery electrodes can improve their storage capacity and stability. The method can be applied to an alternative electrode material called MXene.Lithium-ion batteries have multiple drawbacks in a wide range of applications, and researchers around ...

    2023-08-04
    Посмотреть перевод
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Посмотреть перевод
  • Atomstack leads the new track of intelligent laser engraving

    In today's rapidly developing technology, laser engraving technology is like a mysterious magician, constantly demonstrating amazing skills. In this field full of creativity and competition, Atomstack stands out with its outstanding technology and innovative spirit, becoming a leader in the new track.As the only enterprise in the semiconductor laser engraving machine industry with an annual shipme...

    2024-11-15
    Посмотреть перевод
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Посмотреть перевод