Русский

The new generation of special optical fibers is suitable for the application of quantum technology

197
2024-08-02 14:35:47
Посмотреть перевод

Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.

The highly anticipated aspect of quantum technology is that it can enable people to solve complex logical problems and develop new drugs with unprecedented computing power. At the same time, quantum technology can also bring more secure communication to people by providing unbreakable encryption technology. However, due to the solid core of optical fibers, wired networks that transmit information globally today are not suitable for future quantum communication.

Bright light is transmitted through newly designed optical fibers
The wavelength of light transmitted through traditional optical fibers is determined by the loss of quartz glass. These wavelengths are incompatible with the operating wavelengths of single photon sources, quantum bits, and active optical components required for optical quantum technology. Therefore, researchers must develop support devices that are different from what is currently available in order to ensure their effectiveness in future quantum networks.

This time, researchers from the University of Bath analyzed the relevant challenges of quantum Internet from the perspective of optical fiber technology, and proposed a series of solutions to achieve robust, large-scale scalability of quantum networks, including optical fibers for long-distance communication and special optical fibers that allow quantum repeaters. The newly manufactured special optical fiber is different from standard telecommunications optical fiber in that it has a microstructure core composed of complex air pocket patterns distributed along the entire length of the fiber. These patterns enable people to manipulate the properties of light inside the fiber, create entangled photon pairs, change the color of photons, and even capture individual atoms inside the fiber.

The research team introduced that special optical fibers can achieve quantum computing at the node itself by acting as entangled single photon sources, quantum wavelength converters, low loss switches, or quantum memory containers. Meanwhile, special optical fibers can be directly integrated into the network, greatly extending the operational distance.

The new type of optical fiber can also generate more unique quantum states of light, which can be applied in quantum computing, precision sensing, and information encryption, laying the foundation for large-scale applications of quantum computers in the future.

Source: Network

Связанные рекомендации
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    Посмотреть перевод
  • 3D printed chocolate: a delicious fusion of innovation and sustainable development

    In the era of sustainable development and cutting-edge technology, the integration of 3D printing and culinary art is not only an innovation, but also a proof of human creativity. Imagine in such a world, your desserts are not just coming out of the kitchen, but carefully designed and printed layer by layer. This is not a glimpse of the distant future, but the reality of today, as developers have ...

    2024-02-19
    Посмотреть перевод
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Посмотреть перевод
  • University of California, Los Angeles Joins the American High Power Laser Facility Alliance

    The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.The Phoenix Laser Laboratory at the Uni...

    2023-09-15
    Посмотреть перевод
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    Посмотреть перевод