Русский

A new type of all-optical intelligent spectrometer

695
2024-07-22 11:54:26
Посмотреть перевод

Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoherent light sources, with significant advantages of low energy consumption and light speed processing. The relevant achievements have been published under the title "Opto intelligence Spectrometer Using Diffractive Neural Networks" in the top international optical journal "Nanophotonics" (China University of Science and Technology, Class 1, Top Journal).

Nanophotonics, published by Walter de Gruyter in Germany, focuses on exploring cutting-edge advances in the interaction between light and matter, as well as their fundamental principles and applications. The first authors of this paper are Wang Ze, a master's student at Beijing Institute of Technology, and Chen Hang, a postdoctoral fellow at Tsinghua University. The corresponding authors are Associate Researcher Li Jianan, Professor Xu Tingfa, and Assistant Professor Lin Xing.

The newly developed all optical intelligent spectrometer (OIS) converts the spectral amplitude of the input light source into the detection intensity on the output plane, and uses multiple detectors to accurately perceive the intensity of different spectral bands. By establishing a mapping relationship between input and output and optimizing the phase distribution of the modulation layer using two mean square error (MSE) loss functions, high contrast output intensity distribution and accurate reconstruction of the input light source spectrum were achieved. The principle is shown in Figure 1.

Figure 1. Architecture of all-optical intelligent spectrometer based on diffractive neural network.

The experimental results show that OIS exhibits excellent spectral reconstruction capability under both spatially coherent and spatially incoherent light sources (see Figure 2). In addition, the application testing of the device on the real-world dataset CAVE shows that it has good generalization ability and practical application potential (see Figure 3).

Figure 2. OIS spectral reconstruction results with a spectral resolution of 10nm. Left image: Randomly generated spectral amplitude distribution and spectral reconstruction results. Right figure: Intensity distribution of the output plane.

Figure 3. Spectral reconstruction results of OIS on the real-world dataset CAVE, with a spectral resolution of 10nm.
This study has overcome the long-standing challenges of traditional spectral reconstruction architectures, such as bulky optical components, complex electronic reconstruction algorithms, and limited flexibility. It can serve as a basic unit for array layout, laying the foundation for full light speed and high-quality spectral imaging.

Source: Beijing Institute of Technology

Связанные рекомендации
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Посмотреть перевод
  • Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

    BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese rese...

    2023-12-20
    Посмотреть перевод
  • Singapore MetaOptics seeks to raise funds for the development of superlenses

    MetaOptics, a 2021 startup based in Singapore with expertise in metalenses and related optical components, is aiming to raise net proceeds of S$4 million (approximately US$3.1 million) by listing on the local “Catalist” stock exchange.Targeting emerging applications in smart phones, contactless 3D biometrics modules, tiny pocket projectors, lidar sensors, and augmented and virtual reality (AR/VR) ...

    09-03
    Посмотреть перевод
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    Посмотреть перевод
  • MIT research enables 3D printers to recognize new materials

    According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.Issues with 3D printing of plastics3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.Other more environmentally friendly options also exist and ...

    2024-04-18
    Посмотреть перевод