Русский

The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

212
2024-07-01 14:11:26
Посмотреть перевод

According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress.

 


Image source: Nature website
Titanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they have not been widely applied in the real world. Because this type of laser is usually large in size and expensive, costing hundreds of thousands of dollars per unit, and requiring other high-power equipment (priced at approximately $30000 per unit) to maintain operation.

To solve this problem, researchers first laid a large layer of titanium sapphire on the silica platform; Grind, etch, and polish the titanium sapphire into an extremely thin layer, only a few hundred nanometers thick; Then, design a vortex composed of tiny ridges on the thin layer. These ridges are like fiber optic cables, guiding light to circulate continuously and gradually increasing in intensity. This mode is called a waveguide. Compared with other titanium sapphire lasers, this prototype has reduced its size by 4 orders of magnitude (equivalent to one thousandth of the original) and reduced its cost by 3 orders of magnitude (equivalent to one thousandth of the original).

The remaining part is a microscale heater that can heat the light passing through the waveguide, allowing researchers to change the wavelength of the emitted light and adjust the wavelength range to between 700-1000 nanometers, from red light to infrared light.

In quantum physics, this new laser can significantly reduce the scale of state-of-the-art quantum computers; In the field of neuroscience, it can be applied in optogenetics, allowing scientists to control neurons by guiding light inside the brain through relatively large optical fibers; In ophthalmology, it may be combined with chirped pulse amplification technology in laser surgery to achieve new applications, or provide cheaper and more compact optical coherence tomography technology to evaluate retinal health.

Currently, constantly updated technology allows many laboratories to have ultra small lasers on a single chip, rather than a large and expensive laser. Small size lasers actually help improve efficiency - mathematically speaking, intensity is equal to power divided by area. Therefore, maintaining the same power as large lasers but reducing their concentrated area will result in a significant increase in intensity. More importantly, these compact and powerful lasers can quickly leave the laboratory and serve many different important applications.

Source: Chinese Academy of Sciences

Связанные рекомендации
  • Tongkuai and KDPOF launch their first 980 nm multi gigabit automotive interconnection system

    Tongkuai Optoelectronic Devices, a global leader in vertical cavity laser emitters (VCSEL) and laser diodes (PD) solutions based in Germany, and a Spanish expert in high-speed optical network solutions, KDPOF, showcased the first 980 nm multi gigabit interconnect system for automotive systems at last week's ECOC.Both companies are committed to achieving the most advanced optical data communication...

    2023-10-17
    Посмотреть перевод
  • Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

    Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.Composite materials such as carbon fiber reinforced plastics (CFR...

    2024-03-06
    Посмотреть перевод
  • Application of Airborne Lidar Calibration Board in Various Fields

    With the rapid development of technology, airborne LiDAR technology has become one of the key technologies in modern surveying, remote sensing, navigation and other fields. As an important component of this technology, the airborne LiDAR calibration board plays a crucial role in ensuring the accuracy and stability of the radar system. This article will explore the application and importance of air...

    2024-04-08
    Посмотреть перевод
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    Посмотреть перевод
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    Посмотреть перевод