Русский

Chinese University of Science and Technology Reveals a New Physical Mechanism of Photoinduced Particle Rotation

272
2024-06-25 14:57:34
Посмотреть перевод

Light has angular momentum properties. Circularly polarized or elliptically polarized beams carry spin angular momentum (SAM), while beams with helical phase wavefronts carry orbital angular momentum (OAM). During the interaction between light and particles, the transfer of angular momentum can generate optical torque, driving particles to rotate. Among them, the transfer of optical spin angular momentum will drive particles to spin around the axis of rotation, while the transfer of orbital angular momentum can drive particles to rotate around the optical axis. Photoinduced rotation provides a new dimension for micro particle manipulation and has been widely applied in fields such as optical sensing, optorheology, and microrobots.

Recently, Associate Professor Gong Lei's research group from the Department of Optics and Optical Engineering at the University of Science and Technology of China collaborated with Professor Qiu Chengwei from the National University of Singapore to reveal a new physical mechanism of photo induced particle spin. It was found that even if the incident beam does not carry spin angular momentum, it can generate controllable spin torque after strong focusing. This mechanism utilizes the optical Hall effect to achieve local transfer of spin angular momentum in the focusing field by regulating the spin orbit interaction, thereby driving the captured particles to generate continuous spin motion.

Figure 1. Schematic diagram of the physical mechanism of photo induced particle spin

The relevant research results were published online on June 21st in the internationally renowned academic journal Physical Review Letters under the title "Controllable Microparticle Spinning via Light without Spin Angular Momentum".

Due to the spin orbit interaction, the two spin components of a linearly polarized or radially polarized beam will undergo lateral separation under tight focusing conditions, which is a type of optical spin Hall effect [Figure 1. (a, b)]. However, the spacing of this spin splitting is only on the subwavelength level, and it cannot effectively transfer spin angular momentum when interacting with particles, and cannot drive particle spin [Figure 1. (d, e)]. The research team cleverly uses the optical orbit Hall effect to regulate the distribution of spin angular momentum density in the focusing field. By introducing an orbital angular momentum superposition state in the incident radially polarized light field [Figure 1. (c)], the radial spacing of the two spin components is effectively controlled, achieving the effect of spin angular momentum in the focusing field on microscopic particles. Local transmission ultimately achieved controllable rotation control of particles [Figure 1. (f)].

On this basis, the research team further developed the parallel manipulation function of holographic optical tweezers, which achieved simultaneous capture of multiple particles, independent translation and rotation manipulation by adjusting the wavefront of the incident light field. This study reveals the principle of orbital angular momentum controlling the spin of the focused light field, and provides new ideas for the study of mechanical effects caused by optical spin orbit interactions.

Dr. Wu Yijing from the Department of Optics and Optical Engineering at the University of Science and Technology of China is the first author of the paper, while Associate Professor Gong Lei and Professor Qiu Chengwei from the National University of Singapore are the corresponding authors of the paper. The above research has been supported by the National Natural Science Foundation of China and the Anhui Provincial Natural Science Foundation.

Source: Guangxing Tianxia

Связанные рекомендации
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    Посмотреть перевод
  • Scientists are using lasers to create lunar paving blocks

    Original Hal Bowman 9000 Scientific RazorThe 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAMBy using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these exp...

    2023-10-14
    Посмотреть перевод
  • Shanghai University of Technology publishes the latest Nature paper

    With the increasing demand for human data, the requirements for data storage methods are also increasing. Optical Data Storage (ODS) is a light based storage method commonly used in DVDs, which is low-cost and very durable. But ODS usually stores data in a single layer, and the amount of data that can be stored is limited. Gu Min, academician of Shanghai University of Technology, Wen Jing, and Rua...

    2024-02-26
    Посмотреть перевод
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    Посмотреть перевод
  • Silicon Valley giants compete for a new 3D printing space race track

    Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can ...

    03-24
    Посмотреть перевод