Русский

Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

846
2024-06-12 14:55:22
Посмотреть перевод

Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Technology.

Picosecond pulse lasers are often used in high-energy density physics basic research. As a key component of picosecond laser systems, the laser damage threshold of the reflector directly affects the output energy of the picosecond laser system. Traditional picosecond laser reflectors use hafnium oxide and silicon oxide as high and low refractive index materials, respectively. In recent years, composite materials, including nano layers and mixtures, have received widespread attention in improving the laser damage threshold of thin film components. Studying the picosecond reflectors of composite materials and their laser damage characteristics under different pulse widths of laser irradiation has certain practical application value.

Figure 1. (a) AFM microscopy images and RMS roughness of different mirrors (b) probability distribution of laser induced damage (8ps, 1053 nm)

Figure 2. Probability distribution of laser induced damage with different pulse widths (a) 0.5 ps (b) 1 ps and (c) 3 ps (d) Changes in laser damage threshold with laser pulse width

Researchers used electron beam evaporation technology to prepare four types of composite materials, including hafnium oxide/alumina nano layers, hafnium oxide/silicon oxide nano layers, hafnium oxide alumina mixtures, and hafnium oxide silicon oxide mixtures. Compared with single hafnium oxide materials, composite materials can inhibit crystallization and reduce surface roughness. Four types of reflective mirrors with operating wavelengths at 1053 nm were prepared using the above-mentioned composite materials and silicon oxide materials as high and low refractive index materials. The damage test results of the mirror under laser irradiation with different pulse widths (0.5 ps, 1 ps, 3 ps, and 8 ps) show that compared with the picosecond mirror using hafnium oxide as a high refractive index material, the picosecond mirror using composite materials as a high refractive index material exhibits a higher excitation damage threshold. Within the laser pulse range studied in this article, the initial laser damage mechanism of the reflector begins to change around 3 ps. This achievement is of great significance for improving the performance of optical thin film components such as picosecond laser reflectors.

Source: Shanghai Institute of Optics and Mechanics

Связанные рекомендации
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    Посмотреть перевод
  • Scientists Developing New Low Cost Manufacturing Technologies for High Resolution Optical Components

    Scientists from Leibniz University in Hanover have pioneered the development of a new manufacturing technology - UV LED based microscopy projection lithography. This technology is expected to completely change the manufacturing method of optical components, providing high resolution at lower cost and ease of use. The MPP system utilizes the power of UV LED light sources to transcribe the structura...

    2024-01-06
    Посмотреть перевод
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    Посмотреть перевод
  • Laser Photonics Corporation receives MF-1020 order

    Recently, Laser Photonics Corporation (LPC) announced that it has partnered with Foon Technologies to receive its second order for the DefenseTech MRL (MF-1020) handheld cleaning system, which was facilitated by a distributor.The DTMF-1020 air-cooled handheld pulse laser cleaning equipment adopts dual axis technology, simplifying the maintenance process. The system will be used by the Navy Command...

    02-27
    Посмотреть перевод
  • Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

    Research backgroundIn transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as inco...

    2023-10-16
    Посмотреть перевод