Русский

More evidence of cosmic gravitational wave background: Laser interferometer gravitational wave observatory composed of two detectors

474
2024-05-21 14:14:51
Посмотреть перевод

The gravitational wave background was first detected in 2016. This was announced after the release of the first dataset by the European pulsar timing array. The second set of data has just been released, combined with the timed array of Indian pulsars, and both studies have confirmed the existence of the background. The latest theory seems to suggest that we are seeing a comprehensive signal of the merger of supermassive black holes.

Gravitational waves are spatiotemporal ripples caused by violent processes in the universe. As part of general relativity, Einstein predicted them as early as 1916. People believe that these waves are generated by accelerating masses such as black hole mergers and neutron star collisions. They are expected to travel through space without any obstacles. Their existence was first detected by the Laser Interferometer Gravity Wave Observatory (LIGO) in September 2015. They are believed to originate from the gravitational merger between two black holes located 1.3 billion light-years away.

The Laser Interferometer Gravity Wave Observatory consists of two detectors, one located in Livingston, Louisiana and the other near Hanford, Washington. The detector uses an L-shaped giant arm to measure tiny ripples in the fabric. Universe. 

The background of gravitational waves is a random distribution of gravitational waves that permeate the universe, as detected by the European pulsar timing array. For example, the background is believed to be generated by multiple superimposed gravitational waves generated by supermassive black hole binary stars. Observing the gravitational wave background can provide us with a great opportunity to study the entire universe, just like cosmic background radiation. If it were not for the European pulsar timing array, the Indian PTA, the North American Nahertz Observatory, and the Parks PTA, this achievement would not have been possible.

The Pulsar Timing Array (PTA) consists of a galactic pulsar network, which is monitored and analyzed to detect patterns in the arrival time of its pulses to Earth. Essentially, the function of PTA is equivalent to that of a galaxy sized detector. Although pulsar timing arrays have various applications, the most well-known one is the use of millisecond pulsar arrays to detect and analyze long wavelength gravitational wave backgrounds.

This paper was written by a team led by J. Antoniadis from the Greek Institute of Astrophysics, exploring the meanings of common low-frequency signals observed in the latest data released in the pulsar timing array system. The team collected data from four different datasets and searched for signals containing only high-quality data.

The conclusion is clear and accurate, and there is more evidence to support the existence of gravity wave background. With the passage of time and the increase of pulsar timing array projects, the low-frequency gravity wave background will become increasingly unique. The current task is to explain the details of all these signals in order to maximize the opportunity to explore the universe in this new way.

Source: Laser Net

Связанные рекомендации
  • China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

    Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully pre...

    02-25
    Посмотреть перевод
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Посмотреть перевод
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    Посмотреть перевод
  • Quantum droplets reveal a new field of macroscopic complexity

    Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of q...

    2024-03-28
    Посмотреть перевод
  • Massachusetts University team achieves new breakthrough in photolithography chip

    Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, bu...

    2024-11-06
    Посмотреть перевод