Русский

The Role of Active Tunable Laser in GeSn Nanomechanical Oscillator in Nat Nanotechnology

827
2024-05-14 14:31:16
Посмотреть перевод

It is reported that researchers from Nanyang Technological University in Singapore, Federal Institute of Technology Lausanne in Switzerland, Physics Laboratory of Higher Normal University in Paris, National Center for Scientific Research in France, Sorbonne University, City University of Paris, University of Leeds in the UK, and Korean Academy of Science and Technology (KAIST) have reported on the active tunable laser effect in GeSn nanomechanical oscillators. The study was published in Nature Nanotechnology under the title "Actively tunable laser action in GeSn nanomechanical catalysts".

The mechanical force caused by high-speed oscillation provides a good method for dynamically changing the basic characteristics of materials such as refractive index, absorption coefficient, and gain dynamics. Although precise control of mechanical oscillations has been well developed in the past few decades, the concept of dynamic mechanical forces has not yet been used to develop tunable lasers. In the article, researchers demonstrated the active tunable mid infrared laser effect of a compact class IV nanomechanical oscillator. The GeSn cantilever nanobeam suspended on a silicon substrate is driven by radio frequency wave resonance. Electrically controlled mechanical oscillation can induce periodic elastic strain in GeSn nanobeams over time, thereby achieving greater than 2 μ Active tunable laser emission with m wavelength. This study proposes a wide range mid infrared tunable laser with ultra-low tuning power consumption by utilizing mechanical resonance in radio frequency as the driving mechanism.

Figure 1: Design of a GeSn nanomechanical oscillator with actively tunable laser action.

Figure 2: Experimental setup.

Figure 3: Mechanical characterization and simulation.

Figure 4: Characterization of GeSn material.

Figure 5: Laser emission characteristics of the driving oscillator.

Figure 6: Production process.

Source: Yangtze River Delta Laser Alliance

Связанные рекомендации
  • New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

    Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical comp...

    2024-04-02
    Посмотреть перевод
  • Lawrence Livermore National Laboratory develops PW grade thulium laser in the United States

    Recently, according to Tom's Hardware, Lawrence Livermore National Laboratory (LLNL) in the United States is developing a PW (1015 W) level large aperture thulium (BAT) laser. It is reported that this laser has the ability to increase the efficiency of extreme ultraviolet lithography (EUV) light sources by about 10 times, and may potentially replace the carbon dioxide laser used in current EUV too...

    02-13
    Посмотреть перевод
  • Thorlabs announces acquisition of Praevium Research

    On January 13, 2025, Thorlabs announced the acquisition of long-term partner Praevium Research, a developer of high-speed tunable VCSEL. In the future, Praevium will continue to operate as a department of Thorlabs under the name Praevium Research at its existing locations in California, while retaining its current leadership.It is understood that Christopher Burgner will serve as the general man...

    01-16
    Посмотреть перевод
  • Laser Photonics, the "dark horse" of laser cleaning, plans to build a new factory of nearly 50000 square meters in North America

    On July 2nd local time, Laser Photonics, the dark horse of laser cleaning, announced a major expansion plan: to build a modern new factory covering an area of 50000 square feet (approximately 4645.152 square meters) in Lake Mary, Florida, USA.This expansion marks a firm manifestation of Laser Photonics' confidence in the sustained growth of the North American and even global markets, and also sig...

    2024-07-04
    Посмотреть перевод
  • Atomstack leads the new track of intelligent laser engraving

    In today's rapidly developing technology, laser engraving technology is like a mysterious magician, constantly demonstrating amazing skills. In this field full of creativity and competition, Atomstack stands out with its outstanding technology and innovative spirit, becoming a leader in the new track.As the only enterprise in the semiconductor laser engraving machine industry with an annual shipme...

    2024-11-15
    Посмотреть перевод