Русский

Frankfurt Laser Company launches a new high-power fiber coupled laser diode

441
2024-05-13 13:45:58
Посмотреть перевод

The global leader in laser technology solutions, Frankfurt Laser, has launched a new series of high-power fiber coupled laser diodes, setting a new standard in the laser industry. The innovative 9XXnm high-power fiber coupled laser diode aims to optimize fiber laser pump source applications, providing unparalleled efficiency, compactness, and brightness.

The New Era of Laser Technology
The latest product of Frankfurt Laser Company adopts cutting-edge coupling technology and advanced thermal management system design. These enhanced features ensure that diodes not only meet but also exceed the strict requirements of modern laser applications.
"Our new 9XXnm series is a game changer in the field of laser technology," said Dr. Vsevolod Mazo, CEO of Frankfurt Laser. "These high-power diodes are not only powerful and efficient, but also very compact and suitable for integration into various systems."

Product features
Power level: The new diode has various power levels ranging from 100W to impressive 1 kW, which can meet a wide range of industrial, medical, and research needs.
Compact size: Ultra compact, OEM friendly packaging can be easily integrated into existing and new systems, providing manufacturers with flexibility and convenience.
Core diameter: Customers can choose 100 μ M and 220 μ The core diameter of m ensures optimal performance in various applications.

Diversified applications
The versatility of these diodes makes them an ideal choice for many applications:
Fiber laser pumping: improving the performance and efficiency of fiber lasers.
Laser material processing: very suitable for cutting, carving, and other material processing technologies.
Medical technology: supporting advanced medical procedures and research.
Scientific research: achieving new discoveries and innovations in scientific exploration.

Source: Laser Net

Связанные рекомендации
  • Natural Communication: Oxide Dispersion Enhancement for High Performance 3D Printing of Pure Copper

    The laser additive manufacturing technology of pure copper (Cu) with complex geometric shapes has opened up vast opportunities for the development of microelectronic and telecommunications functional devices. However, laser forming of high-density pure copper remains a challenge.Recently, the forefront of additive manufacturing technology has noticed a joint report by the University of Hong Kong, ...

    04-11
    Посмотреть перевод
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    Посмотреть перевод
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    Посмотреть перевод
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    Посмотреть перевод
  • Experimental verification of driving pressure enhancement and smoothing for hybrid driven inertial confinement fusion on a 100 kJ laser device

    The research teams from the Laser Fusion Research Center of the Chinese Academy of Engineering Physics, the Beijing Institute of Applied Physics and Computational Mathematics, Peking University, and Shenzhen University of Technology reported experimental verification of the driving pressure enhancement and smoothing of hybrid driven inertial confinement fusion on a 100 kJ laser equipment.The relev...

    2023-09-25
    Посмотреть перевод