Русский

Received NASA contract! Breakthrough blue light laser technology leads the space power revolution

185
2024-05-08 15:25:50
Посмотреть перевод

On May 6th, NUBURU, a leading enterprise in high-power and high brightness industrial blue laser technology, announced that the company has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to promote blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian applications. The award of this contract is based on the successful completion of the first phase of the Small Business Innovation Research (SBIR) project by NUBURU in August 2023.

NUBURU's blue power transmission technology has revolutionized the power transmission methods in extreme environments such as the Moon and Mars, achieving economic and practical power transmission by eliminating reliance on bulky copper or aluminum wires.

This technology not only supports dynamic power distribution for mobile roaming vehicles, temporary/permanent campsites, and remote habitats, but also achieves low size, weight, and power (SWaP) design through its unique blue light laser architecture, complemented by clear visibility assisted navigation, efficient direct diode technology, and advanced direct bandgap solar cell technology, ensuring extremely high power transmission efficiency.

Compared to the energy of other wavelengths, the energy of blue light can be concentrated on smaller spots, which means that blue laser can create finer details.

This technological solution is directly aligned with the mission objectives of NASA's Artemis program, which aims to permanently send humans back to the moon. NASA outlined this requirement in the Moon to Mars target of Lunar Infrastructure Goal 1.

In the first stage, NUBURU has fully demonstrated the scientific, technological, and commercial feasibility of its technology. In the second stage, the company plans to further expand the power, range, and performance of blue light laser power beam technology, demonstrating it within kilometers with a power of several hundred watts, and plans to use next-generation technology to expand the technology range to tens of kilometers on the lunar surface.

"The acquisition of this contract once again demonstrates the innovation and disruptive nature of NUBURU's blue light power transmission technology. We have the potential to completely change the power management challenges faced by NASA, other space operators, and numerous commercial enterprises. Our technology is not only applicable to space environments such as the Moon and Mars, but can also be widely applied in ground applications such as remote power solutions, disaster relief operations, and defense logistics," said Brian Knaley, CEO and CFO of NUBURU
He further added, "NUBURU's high brightness blue laser technology has broad application prospects in various fields such as industry, healthcare, national defense, electric vehicles, consumer electronics, aerospace, healthcare, etc. We look forward to bringing revolutionary changes to various industries through this technology."

NASA's SBIR program aims to provide funding support for innovative technologies with commercial potential, ultimately promoting their commercialization and deployment through three stages of research, development, and demonstration. The second phase contract awarded to NUBURU is a crucial step in the commercialization process of blue laser power beam technology.

Source: OFweek

Связанные рекомендации
  • TDK introduces a new gold-wire-bonded optional NTC thermistor for laser diode temperature measurement

    TDK Corporation (TSE: 6762) announced the introduction of the new NTCWS series of NTC thermistors with gold wire bonding. These bonding NTC thermistors can be installed in packages via gold wire bonding to enable high precision temperature detection of laser diodes (LD) for optical communication. The series will begin mass production in September 2023.The use of LD devices in optical communication...

    2023-09-08
    Посмотреть перевод
  • The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

    Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for im...

    2023-11-03
    Посмотреть перевод
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    Посмотреть перевод
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    Посмотреть перевод
  • Researchers have placed photon filters and modulators on standard chips for the first time

    Researchers at the University of Sydney combined photon filters and modulators on a single chip, enabling them to accurately detect signals on the broadband RF spectrum. This work brings photonic chips closer to one day, potentially replacing larger and more complex electronic RF chips in fiber optic networks.The Sydney team utilized stimulated Brillouin scattering technology, which involves conve...

    2023-12-26
    Посмотреть перевод