Русский

First time! Significant progress has been made in low repetition rate fully polarization maintaining nine cavity fiber lasers

851
2024-05-07 16:45:29
Посмотреть перевод

Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, reported for the first time a low repetition frequency full polarization maintaining 9-shaped cavity fiber laser at 915 nm. The relevant research results were published in Optics Express under the title "Low repetition rate 915 nm figure-9 ultrafast laser with all fiber structure".

Laser with a wavelength around 900 nm is highly favored in the field of optical measurement due to its high responsiveness on silicon-based detectors. The low repetition rate fiber laser in this band can effectively reduce distance ambiguity in Time of Flight (TOF), and has the characteristics of good beam quality, compact structure, and long-term stability, making it an ideal light source for space detection. However, due to the strong dispersion and nonlinear effects of single-mode fibers, it is difficult for lasers to achieve single pulse operation in long fiber cavities. Therefore, the repetition frequency of traditional mode-locked fiber lasers is usually limited to tens to hundreds of MHz.

In response to the above issues, researchers have proposed a low repetition rate fully polarized nine cavity fiber laser with a central wavelength of 915 nm. By designing and optimizing the laser structure, high-energy single pulse output was achieved at low repetition rates. The optimized seed was amplified in one stage to obtain a pulse output with a pulse width of 15.2 ps and a single pulse energy of 4.7 nJ at a repetition frequency of 3.1 MHz. The mode locking performance of the laser has been confirmed through long-term power and spectral stability tests. This compact and long-term reliable fiber laser is a promising light source for future space laser ranging.

This work was supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the Shanghai Natural Science Foundation.

Figure 1. Experimental setup diagram of a 915 nm low repetition rate fully polarization maintaining nine cavity fiber laser

Figure 2. Long term stability testing of output power and spectrum, and output characteristics of pulses in frequency and time domains

Source: Yangtze River Delta Laser Alliance

Связанные рекомендации
  • Researchers have proposed a new idea for quasi particle driven ultra bright light sources, which can be used in various applications from non-destructive imaging to chip manufacturing

    An international team of scientists is rethinking the fundamental principles of radiation physics, aiming to create ultra bright light sources. In a new study published in Nature Photonics, researchers from the Higher Institute of Technology in Lisbon, Portugal, the University of Rochester, the University of California, Los Angeles, and the Optical Applications Laboratory in France proposed the us...

    2023-10-24
    Посмотреть перевод
  • Inertia Enterprises focuses on the commercialization of fusion energy

    Inertia Enterprises, a private fusion power start-up, based in San Francisco, CA., has announced the formation of the company, co-founded by fusion energy pioneer Dr. Andrea “Annie” Kritcher, fusion power plant designer Prof. Mike Dunne, and successful tech entrepreneur, Jeff Lawson.Underpinned by this team of experts spanning science, engineering, technology and business, Inertia stated that it i...

    08-29
    Посмотреть перевод
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    Посмотреть перевод
  • The future potential of underwater laser applications is unlimited

    The foundation of offshore wind turbines, port protection systems, steel sheet piles, river barriers, water gates, and even pipelines can all be directly processed in water. Another application area is the dismantling of abandoned nuclear reactors, in which case laser technology can gently dismantle steel structures underwater while minimizing the dissolution of radioactive materials.The ocean, wh...

    06-03
    Посмотреть перевод
  • HSG Laser launches new generation laser solutions

    HSG Laser unveiled its next-generation laser cutting solutions—the GH V2.0 high-power flatbed system and TS2 intelligent tube cutting machine—at its Düsseldorf showroom, marking a major milestone in its European market expansion. (Image: HSG Laser)Attended by customers and partners from across the continent, the event featured live demonstrations of both systems and highlighted HSG’s growing i...

    06-27
    Посмотреть перевод