Русский

Hyperspectral imaging technology: a comprehensive guide from principles to applications

378
2024-04-16 17:35:15
Посмотреть перевод

Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.

Introduction to hyperspectral imaging
Hyperspectral imaging is a technique that utilizes spectral information to obtain the spectrum of each pixel in an image. Compared to traditional imaging systems, hyperspectral imaging can provide more detailed information on object and surface features. By analyzing the unique spectral characteristics of objects and materials, it is possible to identify and quantify them.

Spectral imaging systems can capture electromagnetic spectra ranging from visible light to infrared, providing rich spectral data. This technology is widely used in fields such as food quality and safety, waste classification and recycling, and drug production control.

2. Working principle
Hyperspectral imaging utilizes an imaging spectrometer (also known as a hyperspectral camera) to collect light from a scene and decompose it into various wavelengths or spectral bands. Through this method, a two-dimensional image of the scene can be obtained and the spectral information of each pixel can be recorded. In the final hyperspectral image, each pixel corresponds to a unique spectrum, similar to a fingerprint.

This unique spectrum can be used to identify and quantify objects and materials in the scene. Due to the different reactions of different materials to light, their spectral characteristics are also different. Therefore, object recognition and classification can be achieved through spectra.

3. Information provided
The hyperspectral imaging system provides rich spatial and spectral information, which can be used to solve the problems of "what" and "where". Spectral information allows for recognition and classification of objects, while spatial information provides data on object distribution and regional separation.

Compared to traditional RGB cameras, hyperspectral imaging can provide more detailed and rich information. By analyzing thousands or even hundreds of thousands of spectra, large-scale hyperspectral data cubes containing position, wavelength, and time related information can be obtained, enabling detailed characterization of objects.

4. Application field
Hyperspectral imaging technology has a wide range of applications in various fields:
-Environmental monitoring: used to monitor land use, vegetation health, and water quality changes, as well as detect early signs of ecological degradation.
-Mineral exploration: used to create mineral deposit maps, detect mineral composition and grade.
-Quality control: can be used for non-destructive testing and grading of food, as well as detection of pollutants and defects in industrial products.
-Waste management: can be used to separate various materials and increase the value of recycled materials.
-Agriculture: used to evaluate crop health and yield, monitor soil moisture and nutrient content.
-Military surveillance: used to detect and identify hazardous materials.

epilogue
Hyperspectral imaging technology, as a powerful tool, plays an important role in scientific research, industrial production, and environmental monitoring. With the continuous advancement of technology and the expansion of application scenarios, it is believed that hyperspectral imaging will play an increasingly important role in the future and make greater contributions to the development of human society.

Source: Sohu

Связанные рекомендации
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    Посмотреть перевод
  • The birth of multi photon 3D laser printing technology: printing millions of particles within 1 second

    Multi photon 3D laser printing technology, as a disruptive micro manufacturing technology, is facing two major challenges: speed and material compatibility. However, the latest research has made breakthrough progress, successfully increasing printing speed tenfold while maintaining excellent detail accuracy.In this remarkable study, scientists abandoned the traditional single beam printing method ...

    2024-04-19
    Посмотреть перевод
  • Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

    South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport sh...

    2023-09-22
    Посмотреть перевод
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    05-09
    Посмотреть перевод
  • New type of femtosecond laser: used for broadband terahertz generation and nonlinear wafer detection

    Recently, HüBNER Photonics, the leading manufacturer of high-performance lasers, has launched the latest member of the VALO femtosecond series - VALO Tidal. This laser not only represents a major leap in the fields of imaging, detection, and analysis, but also demonstrates the infinite possibilities of laser technology with its outstanding performance.The VALO Tidal femtosecond laser typically sho...

    2024-06-26
    Посмотреть перевод