Русский

Molecular orientation is key: a new perspective on revealing electronic behavior using two-photon emission spectroscopy

367
2024-03-19 16:20:43
Посмотреть перевод

Organic electronics has aroused great interest in academia and industry due to its potential applications in OLEDs and organic solar cells, with advantages such as lightweight design, flexibility, and cost-effectiveness. These devices are made by depositing organic molecular thin films onto a substrate that serves as electrodes and exerting their effects by controlling electron transfer between the film and substrate. Therefore, understanding the electronic behavior at the interface between the substrate and the thin film, as well as the electronic properties of organic thin films, is crucial for the further development of organic electronics. In addition, simultaneous observation of photocarrier electrons and intramolecular photoexcitation will provide more insights into organic molecular thin films.

Although a technique called photoelectron spectroscopy has been used to study the static electronic states of organic molecule films in detail, accurately detecting the dynamic behavior of electrons attempting to express their functions in devices has always been challenging and hindering progress.

The research team led by Associate Professor Masahiro Shibuta from the Graduate School of Engineering at Osaka City University used two-photon emission spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction to observe the electronic behavior and surface structure of triphenyl molecular thin films deposited on graphite substrates. The results indicate that TP molecules exhibit a special structure, which adsorbs on the substrate in a standing structure. Under light irradiation, two electrons are injected into TP molecules from the substrate, and photoexcited electrons in the molecular thin film are successfully observed simultaneously in a single sample. In addition, strong photoluminescence was also observed on thin films with a special structure consisting of only one layer of molecules, where the molecules were diagonally adsorbed onto the substrate, similar to the case of TP molecules. It is expected that these results will contribute to the development of new luminescent materials and the further development of functional organic electronic devices.

"2PPE spectroscopy is still a new method for evaluating electronic states, but its drawback is that although well optimized measurements are time-consuming, electronic states are sometimes well observed and sometimes not," said Professor Shibuta. Our research findings emphasize that the visibility of electronic states is closely related to the adsorption mode and electronic properties of molecules on the substrate. In other words, not only the type of molecules, but also their arrangement must be appropriately controlled to create a device that can fully demonstrate their functions. I am pleased that our research provides insights for the development of functional materials for practical applications.

Source: Laser Net

Связанные рекомендации
  • Accurate measurement of neptunium ionization potential using new laser technology

    Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy te...

    2024-05-11
    Посмотреть перевод
  • Monport enhances K40 laser cutting machine through air assisted technology

    Monport Laser has launched its latest breakthrough innovative product, the Monport 40W Pro CO2 laser engraving machine, with air assistance. This cutting-edge machine has set a new standard for precision carving, providing excellent performance and a series of upgraded functions. The Monport 40W Pro surpasses its predecessor, the Monport 40W Laser, in all aspects, making it a game-changing solutio...

    2023-10-11
    Посмотреть перевод
  • This semiconductor integrator launches laser chip and array technology

    Recently, Sivers Semiconductors, a well-known chip and integration module supplier in Sweden, announced that its subsidiary Sivers Photonics is partnering with ecosystem partners to showcase its advanced laser chip and array technology at the OFC conference in Santiago.The first on-site demonstration used Ayar Labs optical I/O and CW-WDM MSA compatible SuperNova ™ The light source is powered...

    2024-03-29
    Посмотреть перевод
  • Germany and the United States jointly build a $150 million laser equipment laboratory for studying inertial fusion energy and high energy density physics

    German laser Fusion developer Marvel Fusion said it will partner with Colorado State University (CSU) on a new $150 million laser equipment lab to study inertial fusion energy and high energy density physics."It will be home to one of the most powerful laser facilities in the world and an international center for laser fusion energy and high energy density physics research," the company said in a ...

    2023-08-10
    Посмотреть перевод
  • Optical Drive Magnetic Control: A Breakthrough in Memory Technology

    A recent study conducted by the Hebrew University suggests an undiscovered relationship between magnetism and light. This discovery may pave the way for extremely fast optical storage technology and creative optical magnetic sensor technology.It is expected that this discovery will completely change the way equipment is manufactured and data is stored in a range of fields.Amir Capua, Professor and...

    2024-01-06
    Посмотреть перевод