Русский

Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

216
2024-03-19 16:14:21
Посмотреть перевод

Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped continuum and lanthanum aluminum crystals".

Neodymium (Nd3+) ion is one of the common activating ions, and its absorption peak matches the emission wavelength of commercial laser diodes (LDs), with high absorption efficiency at 0.9, 1.05, and 1.35 μ There are emission peaks at position m, and laser emission has been achieved in various matrix materials. Nd: ASL is a typical disordered crystal, belonging to the hexagonal crystal system. The high disorder leads to its spectral broadening, which is beneficial for generating lasers of different wavelengths.

In order to investigate its tuning characteristics, the research team grew Nd: ASL crystals with a doping concentration of 5%, and measured their fluorescence lifetime to be approximately 371.8 μ S. At 1.05 μ Near m, its fluorescence spectrum has four strong and continuous emission spectra. A birefringent filter was inserted into the V-shaped resonant cavity for tunable laser experiments. By using output mirrors with transmittance of 5%, 7%, and 10%, three independent wavelengths (1050, 1062, and 1074 nm) of laser output were obtained. The wavelength range is 1049.59-1054.43 nm and 1059.71-1078.18 nm for tuning, with a tuning width greater than 20 nm, which is consistent with the spectrum. The phenomenon of multi wavelength laser output was also observed in the experiment. The results indicate that Nd: ASL crystals are a gain medium suitable for tunable lasers. Compared with single wavelength laser media, controlling and changing the wavelength is much more convenient and suitable for complex application scenarios with higher accuracy or more wavelengths.

This work has received support from projects such as the National Natural Science Foundation of China.


Figure 1. Fluorescence spectrum of Nd: ASL crystal

Figure 2. Laser output with three wavelengths at different output mirror transmittance

Figure 3. Output power at different wavelengths under the same absorption pump power

Source: Shanghai Institute of Optics and Mechanics

Связанные рекомендации
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    Посмотреть перевод
  • MIT research enables 3D printers to recognize new materials

    According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.Issues with 3D printing of plastics3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.Other more environmentally friendly options also exist and ...

    2024-04-18
    Посмотреть перевод
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    Посмотреть перевод
  • Smaller laser facilities use new methods to break records before proton acceleration

    The Helmholtz Dresden Rosendorf Center (HZDR) has made significant progress in laser plasma acceleration. By adopting innovative methods, the research team successfully surpassed previous proton acceleration records significantly.They obtained energy for the first time that can only be achieved in larger facilities so far. As reported by the research team in the journal Nature Physics, promising a...

    2024-05-15
    Посмотреть перевод
  • Overview: High throughput preparation of alloy composition design in additive manufacturing

    Researchers from the New Materials Technology Research Institute of Beijing University of Science and Technology and the Beijing Modern Transportation Metal Materials and Processing Laboratory reported a review of high-throughput preparation of alloy composition design in additive manufacturing. The relevant research is titled "High throughput preparation for alloy composition design in additive m...

    2024-07-08
    Посмотреть перевод