Русский

New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

1353
2024-03-15 14:10:04
Посмотреть перевод

Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introduce interstitial liquid film filling defects, cracks in components can be "welded" at the microscale. This research achievement is of great significance for breaking through the industry challenge of laser additive manufacturing of high crack sensitivity alloys.

Paper graphic abstract


Liquid induced hearing of cracks in nickel based superalloy fabricated by laser powder bed fusion - ScienceDirect
Laser additive manufacturing is a revolutionary technology that solves the problem of personalized and complex metal component integral forming, with huge application prospects. However, only over ten out of the hundreds of commonly used engineering alloys can stably achieve crack free printing, which is far from meeting the needs of replacing traditional processes.

Compared to processes such as casting and welding, laser additive manufacturing technology has inherent properties of micro zone ultra normal metallurgy and rapid solidification, making it more prone to cracking. There are two existing methods to deal with cracks in laser additive manufacturing. One is to suppress cracks during the printing process by adjusting the alloy solidification range, grain morphology, and component temperature gradient. However, there are significant differences in the effectiveness of different alloy systems, with narrow process windows and poor stability, making it difficult to completely eliminate cracks; The second is to use hot isostatic pressing (HIP) post-treatment to close cracks. However, HIP cannot repair surface defects and requires further processing to remove surface materials, which undoubtedly weakens the core advantage of additive manufacturing technology in forming complex structures.

In addition, the extremely high working conditions make HIP equipment complex and extremely expensive, making it only suitable for a small number of high value-added metal additive manufacturing components.

In this regard, the research team proposed the liquid induced healing (LIH) technology based on the technical idea of introducing intergranular continuous liquid film to "weld" cracks, and verified the feasibility and progressiveness of the LIH technology by taking the typical high crack sensitivity alloy IN738LC as the test alloy. The research results showed that the mechanical properties of the alloy were significantly improved after LIH technology treatment. In terms of tensile properties, the LIH state is higher than the cast state and hot isostatic pressing state, while in terms of high-temperature creep, the LIH state alloy exhibits properties comparable to precision casting and far higher than the hot isostatic pressing state.

It is reported that compared with the most reliable HIP technology currently available, LIH technology has significant advantages in defect elimination efficiency, universality, convenience, and cost. Firstly, it breaks through the technical limitations of its inability to heal surface defects, making it suitable for pore healing treatment of complex components without the need for additional machining to remove the surface; Secondly, the pressure required by LIH is less than 1/20 of that of HIP technology, eliminating safety hazards of high-pressure special equipment and simplifying equipment construction and cost; Thirdly, there is no need for insulation treatment, while HIP needs to be insulated at high temperatures for several hours, thereby improving process efficiency and reducing energy consumption costs.

Source: Sohu

Связанные рекомендации
  • Laser ablation helps to trace the origin of medieval metals

    Archaeologists have long wondered why the people of Anglo Saxon England began using more silver coins and fewer gold coins between 660 and 750 AD. Researchers in Europe now say they have developed a method to help find the answer. This technology combines laser ablation with traditional trace element analysis to match the isotopic abundance of silver bars in coins with known sources of metal ores ...

    2024-04-13
    Посмотреть перевод
  • China University of Science and Technology has made significant progress in the field of pure red perovskite light-emitting diodes

    Recently, four research groups from the University of Science and Technology of China, namely Yao Hongbin, Fan Fengjia, Lin Yue, and Hu Wei, have collaborated to make significant progress in the field of pure red perovskite light-emitting diodes (LEDs). The team independently invented the Electrical Excitation Transient Spectroscopy (EETA) technology and used it to reveal that hole leakage is the ...

    05-12
    Посмотреть перевод
  • Tongkuai will participate in the laser fusion energy research program

    The US Department of Energy recently allocated $42 million to support the development of laser fusion technology and designated three new research and innovation centers. This strategic investment aims to promote laser based nuclear fusion to play an important role as a clean and sustainable energy source in the future. Trumpf is one of the main participants known for its laser expertise and activ...

    2024-02-01
    Посмотреть перевод
  • Laser giant seeks $100 million financing for $422 million debt restructuring

    On August 6th local time, Luminar, a leading publicly traded company in the field of LiDAR, announced a $422 million debt restructuring and raised $100 million in new capital. This measure marks Luminar taking solid steps in optimizing its capital structure and enhancing its financial stability.In early May this year, this laser radar manufacturer released an open letter disclosing a major strateg...

    2024-08-09
    Посмотреть перевод
  • University of California, Los Angeles Joins the American High Power Laser Facility Alliance

    The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.The Phoenix Laser Laboratory at the Uni...

    2023-09-15
    Посмотреть перевод