Русский

Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

426
2024-03-02 11:13:23
Посмотреть перевод

Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navigation, and large bandwidth data processing.

In a new paper published in Nature Photonics, researchers reported improvements in the stable generation of multi wavelength signals using micro integrated comb laser systems. This study is a collaboration between the German Center for Electronic Synchrotron Radiation (DESY Hamburg) and a Swiss startup called Enlightra, which focuses on developing efficient multi wavelength lasers for high-capacity data transmission and optical computing. The author states that light sources are a key technology that drives optical communication to reach the data rate required by artificial intelligence.

This paper titled "Synthetic reflection self injection locked microcombs" showcases a special design. By introducing a customized nanostructure into the ring resonator in a micro comb system, the integrated comb laser can emit laser radiation in a stable and efficient manner. This novel design can improve the performance of comb lasers, enabling them to play a better role in fields such as optical communication and optical computing.

This study demonstrates a microcavity resonator with programmable synthetic reflection, providing customized injection feedback for driving lasers. This synthetic reflection enables them to achieve stable and definite working states of self injection locking micro combs. This is in stark contrast to the traditional self injection locking based on random defect scattering.

Dr. John Jost, one of the authors, said, "This is stability achieved through design. In addition to stability, we have also increased conversion efficiency by more than 15 times."

As part of the research, the author conducted various tests using different nanostructured ring resonators and docked semiconductor laser diodes with photonic chips. The resonator is designed using a photonic crystal micro ring structure based on a silicon nitride platform and prepared through ultraviolet lithography technology. The study was only demonstrated in the C-band, but the researchers stated that it performed equally well in all communication bands.

The comb laser proposed by this research institute can be widely produced and integrated with other photonic integrated circuits. Therefore, it can support fast optical input/output units or optical programmable gate arrays, which is of great significance for data intensive applications such as generative artificial intelligence and novel non integrated computer and memory architectures.

According to researchers, this is the first time that back reflection technology has been used to achieve stable and efficient generation of laser combs. With this stable, efficient, and easy to manufacture new design, laser micro combs are expected to make rapid progress in applications such as portable sensors, autonomous navigation, or extremely wide bandwidth data processing.

Source: Sohu

Связанные рекомендации
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    Посмотреть перевод
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    Посмотреть перевод
  • Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

    Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The micr...

    2023-08-15
    Посмотреть перевод
  • Sivers Photonics has received a $1 million order for advanced optical sensing products in fields such as LiDAR and industrial applications

    Sivers Semiconductors AB announced that its subsidiary Sivers Photonics has received a new order worth $1 million for advanced optical sensing products from three customers in the fields of LiDAR, Medical, and Industrial.In the first half of the fourth quarter of 2023, new orders were received from several US clients, which will lead to the manufacturing of advanced lasers and optical amplifiers f...

    2023-11-30
    Посмотреть перевод
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    Посмотреть перевод