Русский

New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

489
2024-03-01 13:57:17
Посмотреть перевод

Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.



By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full integration of lasers and amplifiers on a single chip, providing excellent performance, speed, reliability, as well as high-density and low-power advantages for data centers, artificial intelligence, and 5G applications.

How to achieve it?
The implementation of this technology benefits from Tower Semiconductor's large-scale basic PH18M silicon photon foundry technology, which includes low loss waveguides, photodetectors, and modulators.

Scientific Photonics successfully integrated the DFB laser and amplifier onto the back of the wafer. According to the further test of the Scintil circuit by the customer, this integration does not need to be sealed, and at the same time, it shows excellent anti-aging characteristics and stability.

High level evaluations from both parties
Scintil Photonics is an advanced supplier of silicon photonic integrated circuits, providing single-chip integrated lasers and optical amplifiers. Its products are unique in providing higher bit rates for optical communication applications, as well as scalable, cost-effective, and mass-produced PIC (Photonic Integrated Circuit) solutions.

Regarding this breakthrough, Sylvie Menezo, President and CEO of Scientific Photonics, said, "We are honored to have established a partnership with Tower Semiconductor, a leading global wafer foundry. This collaboration marks an important milestone in our efforts to advance communication technology and products."

He added, "Through our long-term cooperation, we have the ability to provide laser enhanced silicon photon technology, redefining integration, performance, and scalability. This will enable Scintil to be produced in large quantities to meet the urgent needs of the market. In addition, our technology shows enormous potential to adapt to the integration of more materials, such as quantum dots and lithium niobate materials."

Edward Preisler, Vice President and General Manager of Tower Semiconductor's RF Business Unit, also expressed his joy: "We are pleased to support Scientific Photonics in this highly integrated solution, which fully utilizes our company's mature production components. The integration of III-V optical amplifiers/lasers is highly consistent with Tower Semiconductor's commitment to bringing cutting-edge silicon photon technology to the market."

Source: OFweek

Связанные рекомендации
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    Посмотреть перевод
  • Improved spectrometer color filter array for software calibration without the need for laser

    Hackaday will launch cool projects that may stimulate others to expand and enhance it, and even move in a completely new direction. This is the way the most advanced technology continues to evolve. This DIY spectrometer project is a great example of this spirit. It comes from Michael Prathofer, who was inspired by Les Wright's PySpectrometer, a simple device pieced together by a pocket spectrom...

    2024-05-28
    Посмотреть перевод
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Посмотреть перевод
  • Korean researchers use laser ablation to create deformable micro supercapacitors

    Recently, a research team from the Korea Institute of Industrial Technology and POSTECH University successfully utilized laser sintering pattern technology to create a deformable micro supercapacitor (MSCs), specifically designed to provide energy storage solutions for soft electronic devices. This breakthrough meets the urgent need for efficient energy storage systems in stretchable devices in...

    2024-05-30
    Посмотреть перевод
  • The Indian medical laser market has entered a rapid growth mode

    According to industry forecasts, the medical laser market in India, especially in the field of medical aesthetics, is expected to be worth up to 71572 million rupees in fiscal year 2023. It is expected that this number will increase to 1.8358 billion rupees by fiscal year 2031, with a compound annual growth rate of 12.49%.Alma Medical, a global innovator in the field of medical lasers in Israel, h...

    2024-07-05
    Посмотреть перевод