Русский

Generating dark and entangled states in optical cavities: unlocking new possibilities in quantum metrology

187
2024-02-20 14:20:50
Посмотреть перевод

Physicists have been working hard to improve the accuracy of atomic clocks, which are the most precise timing devices currently available. A promising way to achieve higher accuracy is to utilize spin squeezed states in clock atoms.

Spin squeezed states are entangled quantum states in which particles work together to counteract their inherent quantum noise. These states provide incredible potential for quantum enhanced measurement and metrology. However, creating spin squeezed states with minimal external noise in optical transitions has always been a challenging task.

The research team led by Anna Maria Ray has been focusing on using optical cavities to generate spin squeezed states. These chambers are composed of mirrors, allowing light to reflect back and forth multiple times. In the cavity, atoms can synchronize their photon emission, producing much brighter light than individual atoms alone. This phenomenon is called superradiance. According to the control method of superradiance, it may lead to entanglement or destruction of the required quantum state.

In their previous work, Rey and her team found that multi-level atoms with two or more internal energy states provided unique opportunities for utilizing superradiance emission. By inducing atoms to cancel each other's emission, they can produce dark states that are not affected by superradiance.

Now, in two recently released studies, the team has revealed a method that can not only generate dark states in optical cavities, but also spin compress these states. This breakthrough opens up exciting possibilities for the generation of entangled clocks and the advancement of quantum metrology.

Researchers have discovered two methods for preparing highly entangled spin squeezed states in atoms. One method is to use a laser to power atoms and place them at special points on a superradiance potential called saddle points. At these points, atoms reshape their noise distribution and become highly compressed. Another method is to transfer the superradiance state to the dark state, utilizing specific points where atoms approach bright spots with zero curvature.
The fascinating aspect of these findings is that even without external laser drive, spin squeezing can be retained. This conversion of compressed state to dark state not only maintains the reduced noise characteristics, but also ensures their survival.

These findings provide new avenues for quantum metrology, enabling more precise measurements and enhancing the capabilities of atomic clocks. By utilizing dark and entangled states within optical cavities, researchers can unleash the potential of quantum enhancement technology and delve deeper into the fascinating world of quantum physics.

Source: Laser Net

Связанные рекомендации
  • Xinjiang Institute of Physical and Chemical Technology has established the largest database of computational nonlinear optical crystal materials to date

    Modern laser technology urgently requires nonlinear optical materials that can generate coherent light through second harmonic generation. However, only a small portion of the nonlinear optical properties of non centrosymmetric crystal materials have been experimentally or theoretically studied, and exploration for high-performance nonlinear optical crystal materials is still very limited.Recentl...

    2023-10-24
    Посмотреть перевод
  • UCI Cinemas collaborates with The Marvels to launch its new 4K laser projector

    Cinemas are in a developmental stage. Their roles are changing and the rules are being rewritten. Many people have proposed a way to make cinemas a truly unique place by providing audiences with a higher quality experience. It is along this route that UCI Cinemas continues to move forward. In recent days, it has officially launched a 4K laser projector and had a special date with the new MCU movie...

    2023-11-14
    Посмотреть перевод
  • Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

    Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional ma...

    2024-02-23
    Посмотреть перевод
  • Leica Cine 1 laser TV with 4K display screen launched with a starting price of $8995

    Photography brand Leica has launched its first 4K movie and television. The Leica Cine 1 laser TV was announced a year later during the I FA 2022 period. This iconic photography brand is shifting some of its focus to projecting perfect images in our living room.featureThe Leica Cine 1 laser TV embodies Leica's philosophy in its camera design. Leica continues to provide precision optical engineerin...

    2023-10-19
    Посмотреть перевод
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    Посмотреть перевод