Русский

The new chip opens the door to artificial intelligence computing at the speed of light

841
2024-02-18 10:16:33
Посмотреть перевод

Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.

The design of a silicon photonic chip was the first to combine the Benjamin Franklin Medal winner with H Professor Nedwell Ramsey Nader Engheta's pioneering research on manipulating materials at the nanoscale to use light for mathematical calculations is combined with the SiPh platform, which uses silicon as a cheap and abundant element for large-scale production of computer chips.

The interaction between light waves and matter represents a possible way to develop computers that have replaced the limitations of today's chips, which are basically based on the same principles as chips in the early stages of the computing revolution in the 1960s.

In a paper published in Nature Photonics, Engheta's team, along with the team of Associate Professor of Electrical and Systems Engineering Firoz Aflatouni, described the development of a new chip.

"We have decided to work together," Engheta said, leveraging the fact that Aflatouni's research team has pioneered nanoscale silicon devices.

Their goal is to develop a platform to perform so-called vector matrix multiplication, which is the core mathematical operation of neural network development and functionality. Neural networks are the computer architecture of today's artificial intelligence tools.

Engheta explained, "You're not using highly uniform silicon wafers, but making the silicon thinner, such as 150 nanometers," but only in specific areas. These height changes - without adding any other materials - provide a way to control the propagation of light through the chip, as the height changes can be distributed to cause light to scatter in specific modes, allowing the chip to perform mathematical calculations at the speed of light.

Aflatouni said that due to restrictions imposed by commercial foundries producing chips, this design is ready for commercial applications and may be applicable to graphics processing units. With the widespread interest in developing new artificial intelligence systems, the demand for graphics processing units has surged.

"They can use silicon photonics platforms as additional components," Aflatouni said, "and then you can accelerate training and classification speed.".

In addition to faster speeds and lower energy consumption, Engheta and Aflatouni chips also have privacy advantages: because many calculations can be performed simultaneously, sensitive information does not need to be stored in the computer's working memory, making future computers driven by this technology almost impossible to crack.
"No one can invade non-existent memory to access your information," said Aflatouni.

Other co authors include Vahid Nikkhah, Ali Pirmoradi, Farshid Ashtiani, and Brian Edwards from the School of Engineering at the University of Pennsylvania.

Source: Laser Net

Связанные рекомендации
  • Laser Photonics Corporation receives MF-1020 order

    Recently, Laser Photonics Corporation (LPC) announced that it has partnered with Foon Technologies to receive its second order for the DefenseTech MRL (MF-1020) handheld cleaning system, which was facilitated by a distributor.The DTMF-1020 air-cooled handheld pulse laser cleaning equipment adopts dual axis technology, simplifying the maintenance process. The system will be used by the Navy Command...

    02-27
    Посмотреть перевод
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    Посмотреть перевод
  • Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

    Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal o...

    2023-09-15
    Посмотреть перевод
  • In situ bubble point measurement using spectroscopy

    Develop and research a new downhole bubble point pressure measurement technology suitable for black oil and volatile oil to enhance well analysis using spectroscopy.Representative fluid characteristics are required for a wide range of oilfield lifespans, such as the initial scale and production planning of reservoir hydrocarbon reserves. Fluid characteristics are usually obtained from laboratory s...

    2024-01-31
    Посмотреть перевод
  • ELI and LLNL strengthen transatlantic large-scale laser cooperation

    Lawrence Livermore National Laboratory (LLNL) and the Extreme Light Infrastructure (ELI) European Research Infrastructure Consortium (ERIC) have announced that they have signed a new Memorandum of Understanding. This builds on their existing decade of strategic collaboration to advance high-power laser technology.“We are looking forward to expanding our existing collaborations with ELI on areas su...

    07-09
    Посмотреть перевод