Русский

The First Operation of Two Color Mode in Infrared Free Electron Laser

404
2024-02-18 10:10:09
Посмотреть перевод

The Fritz Haber Institute of the Max Planck Institute in Berlin has achieved a technological milestone. The infrared free electron laser operates in dual color mode for the first time. This globally unique technology makes it possible to conduct experiments on synchronous dual color laser pulses, opening up new possibilities for research.

There are over a dozen free electron lasers worldwide, with significant differences in size, wavelength range, and cost. However, they all generate strong short radiation pulses. In the past few decades, free electron lasers have become an important radiation source and have been widely applied in basic research and applied science.

FHI researchers have now collaborated with American partners to develop a method that can simultaneously generate two different colored infrared pulses. This innovation is particularly important for studying the temporal processes of solids and molecules.

In FEL, the electron beam is first accelerated by an electron accelerator to a very high kinetic energy, reaching a speed close to the speed of light. Then, the fast electrons pass through a undulator, where they are forced into a path similar to a turbulent vortex by a strong magnetic field with periodic changes in polarity.

The oscillation of electrons leads to the emission of electromagnetic radiation, and its wavelength can be changed by adjusting the electron energy and/or magnetic field strength. For this reason, FEL can be used to generate laser like radiation in almost all parts of the electromagnetic spectrum, ranging from long terahertz to short X-ray wavelengths.

Since 2012, FEL has been operating at FHI, generating strong pulsed radiation in the mid infrared range, with wavelengths continuously adjustable in the range of 2.8 to 50 micrometers. In recent years, scientists and engineers at FHI have been dedicated to dual color expansion, installing a second FEL branch to generate far-infrared radiation with wavelengths between 5 and 170 microns.

The FIR-FEL branch includes a new hybrid magnet wave generator, which was specifically built at FHI. In addition, a 500 MHz kick chamber is installed behind the electron linear accelerator for lateral electron deflection. The kicking chamber can change the direction of high-energy electron beams at a speed of 1 billion times per second.

In June 2023, the FHI team demonstrated the first "laser" of the new FIR-FEL, guiding all electron beams from LINAC to FIR-FEL. In December 2023, they demonstrated the dual color operation for the first time. In this mode, the strong oscillating electric field formed in the kicking chamber causes every two electron beams to deflect to the left and every other electron beam to deflect to the right.

In this way, the high repetition rate electron beam from LINAC is divided into two beams, with each beam having half the repetition rate; One is guided to the old MIR-FEL, and the other is guided to the new FIR-FEL. In each FEL, changing the magnetic field intensity of the oscillator can continuously tune the wavelength up to four times.

For about a decade, FHI-FEL has enabled FHI's research team to conduct experiments on nonlinear solid-state spectroscopy and surface science from the spectra of clusters, nanoparticles, and biomolecules in the gas phase. To date, there have been approximately 100 peer-reviewed publications.

The new dual color mode is not available in any other IR FEL facility worldwide, and it will enable new experiments such as MIR/MIR and MIR/FIR pump probe experiments. This is expected to open up new opportunities for experimental research in different fields such as physical chemistry, materials science, catalytic research, and biomolecular research, thereby contributing to the development of new materials and drugs.

Source: Laser Net

Связанные рекомендации
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Посмотреть перевод
  • Understanding the "single-mode" and "multi-mode" in cleaning lasers in one article

    In industrial production, cleaning is a crucial step. Traditional cleaning methods, such as mechanical cleaning and chemical cleaning, although can meet production needs to a certain extent, often have problems such as low flexibility and environmental pollution. With the advancement of technology, laser cleaning technology has emerged as a new favorite in the cleaning field due to its high effici...

    05-14
    Посмотреть перевод
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    Посмотреть перевод
  • Frankfurt Laser Company launches a new high-power fiber coupled laser diode

    The global leader in laser technology solutions, Frankfurt Laser, has launched a new series of high-power fiber coupled laser diodes, setting a new standard in the laser industry. The innovative 9XXnm high-power fiber coupled laser diode aims to optimize fiber laser pump source applications, providing unparalleled efficiency, compactness, and brightness.The New Era of Laser TechnologyThe latest pr...

    2024-05-13
    Посмотреть перевод
  • Aspen Laser launches patented four wavelength Ascent laser series in the medical equipment industry

    Recently, Aspen Laser, an emerging global leader in the medical equipment industry, announced that after several months of trial operation, it has officially launched the Ascent laser series and is ready for shipment. It is reported that this new therapeutic laser series, with its outstanding 32 watt combined power and unique patented four wave laser technology in the industry, once again demons...

    2024-08-12
    Посмотреть перевод