Русский

Revealing the essence of optical vortices: a step towards understanding the interaction between light and matter

479
2023-12-29 14:15:32
Посмотреть перевод

In a groundbreaking scientific study published in Volume 13 of the Scientific Report, researchers reported on the results of Young's double slit interference experiment using oscillating vortex radiation under a photon counting system. The experiment involves using a spiral oscillator to emit second harmonic radiation in the ultraviolet range. Using an ultra narrow bandpass filter in the low current mode of the electronic storage ring to isolate this radiation and achieve successful counting measurements.

It is worth noting that researchers have observed individual photon spots randomly distributed on the detector. However, when these light spots are integrated together, they reveal interference fringes that exhibit optical vortex characteristics, such as dark fringes at the center, broken and twisted fringes. The reproducibility of these interference fringes was confirmed by calculating the optical path difference between the optical vortex reaching the double slit and the normal double slit interference.

This observation indicates that even single photons emitted by high-energy electrons in spiral motion exhibit optical vortex properties, characterized by spiral wavefronts. In fact, this is the first time this special feature has been observed in a single photon.

Optical vortices are known for their spiral wavefronts and their relationship with orbital angular momentum, which have aroused great interest in our understanding of light matter interactions. They have been studied in various environments, including spectroscopic measurements, particle capture, and their applications in STED microscopy.

Traditionally, the generation of optical vortices is achieved by transforming a Gaussian laser beam. However, this study suggests that the harmonic components of electromagnetic waves emitted by electrons in helical motion naturally have a helical phase structure. This breakthrough discovery raises an interesting question of whether individual electrons generate optical vortices and whether each photon has a spiral wavefront structure. These findings are expected to make significant contributions to the ongoing study of optical wave particle duality.

Source: Laser Net

Связанные рекомендации
  • Researchers have created the first organic semiconductor laser to operate without the need for a separate light source

    OLED is located at the top and is formed by an organic layer between the contacts. Apply voltage to it, inject charge and generate light, which in turn excites organic laser. Organic lasers contain a grating that can generate feedback and diffract some of the laser out of the structure.Organic laserResearchers have created the first organic semiconductor laser to operate without the need for a sep...

    2023-11-29
    Посмотреть перевод
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    Посмотреть перевод
  • DataLase launches a new laser active transparent to white coating

    Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. Thi...

    2024-03-09
    Посмотреть перевод
  • Tunoptix makes breakthrough progress in meta optical platform

    Tunoptix, a developer of computational meta-optics, based in Seattle, WA, has made what it calls “a breakthrough in mobile-scale spectral imaging”. The company’s latest meta-optical platform captures high-fidelity spectral signatures across the visible-to-NIR spectrum in a compact form factor smaller than 1 cm3, consuming less than 500 mW, and operating at real-time frame rates.Tunoptix’s ultra-c...

    07-02
    Посмотреть перевод
  • Snapmaker Announces Its First Dedicated Laser Cutter, the Ray, in 20w and 40w Flavors

    Snapmaker has been making three-in-one manufacturing tools -- The Snapmaker, Snapmaker 2 and Artisan -- for over six years now. These machines have changeable tool heads that can be used for 3D printing, laser cutting and CNC machining. At the beginning of this year, it branched out to make adedicated 3D printer, the J1-- a dual print-head machine that works very well -- and today the ...

    2023-08-28
    Посмотреть перевод